A114448 Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).
0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 3, 4, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 0, 0, 0, 2, 0, 5, 0, 0, 4, 1, 0, 1, 1, 1, 3, 1, 6, 1, 1, 9, 2, 1, 0, 0, 2, 0, 4, 4, 0, 0, 8, 6, 3, 4, 1, 0, 1, 0, 1, 0, 3, 1, 1, 0, 5, 4, 9, 2, 1
Offset: 1
Examples
2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
Crossrefs
Cf. A051127, A051128, A094263. Transpose of A060154. First 13 rows are A057427(n-1), A015910, A066601, A066602, A066603, A066604, A066438, A066439, A066440, A056969, A066441, A066442, A116609. First 12 columns are A000004, A000035, A010872, A000035, A010874, A070431, A010876, A000035, A021559(n+1), A008959, A010880, A070435.
Programs
-
Mathematica
a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)
Extensions
More terms from David Wasserman, Jan 25 2007
Comments