cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114479 Kekulé numbers for certain benzenoids.

This page as a plain text file.
%I A114479 #23 Jul 24 2022 10:59:39
%S A114479 3,20,136,928,6336,43264,295424,2017280,13774848,94060544,642285568,
%T A114479 4385800192,29948116992,204498534400,1396403339264,9535238438912,
%U A114479 65110680797184,444603538866176,3035942864551936,20730714605486080
%N A114479 Kekulé numbers for certain benzenoids.
%D A114479 S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 205).
%H A114479 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8).
%F A114479 a(n) = ((4+sqrt(8))^(n+1) + (4-sqrt(8))^(n+1))/16.
%F A114479 a(n) = 8*a(n-1) - 8*a(n-2). - _Colin Barker_, Aug 30 2013
%F A114479 G.f.: -x*(4*x-3) / (8*x^2 - 8*x + 1). - _Colin Barker_, Aug 30 2013
%F A114479 a(n)= 3*A057084(n-1) - 4*A057084(n-2). - _R. J. Mathar_, Aug 30 2013
%F A114479 a(n) = A007052(n+1)*2^(n-1). - _R. J. Mathar_, Jul 24 2022
%p A114479 a:=((4+sqrt(8))^(n+1)+(4-sqrt(8))^(n+1))/16: seq(expand(a(n)),n=1..23);
%K A114479 nonn,easy
%O A114479 1,1
%A A114479 _Emeric Deutsch_, Nov 30 2005