cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114482 Let S(1)=1, S(2)=10; S(2n)=concatenation of S(2n-1), S(2n-2) and 0; and S(2n+1)=concatenation of S(2n), S(2n) and 0. Sequence gives S(infinity).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Leroy Quet, Nov 30 2005

Keywords

Comments

Number of terms in S(n) is A062318(n).
Interpreting S(n) in binary and converting to decimal gives 1,2,20,164,84296,43159880,5792821120672400,...,.

Examples

			S(3) = {1,0,1,0,0}, S(4) = {1,0,1,0,0,1,0,0}, S(5) = {1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0}, ...
		

Crossrefs

Programs

  • Mathematica
    a[1] = {1}; a[2] = {1, 0}; a[n_] := a[n] = If[EvenQ[n], Join[a[n - 1], a[n - 2], {0}] // Flatten, Join[a[n - 1], a[n - 1], {0}] // Flatten]; a[8] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jan 01 2006
Edited by N. J. A. Sloane, Jan 03 2006