A114483 s(1)={1}. s(2)={1,0}. If a(n) = 0, s(n+2) = s(n+1) U s(n) U {1}. If a(n) = 1, s(n+2) = s(n+1) U s(n+1) U {1}. (U represents concatenation of finite sequences.) {a(n)} is the limit of {s(n)} as n -> infinity.
1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1
Offset: 1
Examples
s(3) = {1,0,1,0,1}, s(4) = {1,0,1,0,1,1,0,1}, s(5) = {1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1}
Extensions
More terms from Joshua Zucker, Jul 27 2006
Comments