This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114499 #4 Mar 30 2012 17:36:07 %S A114499 1,1,2,4,1,12,2,37,5,119,12,1,390,36,3,1307,114,9,4460,376,25,1,15452, %T A114499 1262,78,4,54207,4310,255,14,192170,14934,863,44,1,687386,52397,2967, %U A114499 145,5,2477810,185780,10338,492,20,8992007,664631,36424,1712,70,1 %N A114499 Triangle read by rows: number of Dyck paths of semilength n having k 3-bridges of a given shape (0<=k<=floor(n/3)). A 3-bridge is a subpath of the form UUUDDD or UUDUDD starting at level 0. %C A114499 Row n has 1+floor(n/3) terms. Row sums are the Catalan numbers (A000108). Column 0 is A114500. Sum(kT(n,k),k=0..floor(n/3))=Catalan(n-2) (n>=3; A000108). %F A114499 G.f.=1/(1+z^3-tz^3-zC), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. %e A114499 T(4,1)=2 because we have UD(UUUDDD) and (UUUDDD)UD (or UD(UUDUDD) and (UUDUDD)UD). The 3-bridges are shown between parentheses. %e A114499 Triangle starts: %e A114499 1; %e A114499 1; %e A114499 2; %e A114499 4,1; %e A114499 12,2; %e A114499 37,5; %e A114499 119,12,1; %e A114499 390,36,3; %e A114499 1307,114,9; %p A114499 C:=(1-sqrt(1-4*z))/2/z: G:=1/(1-z*C+z^3-t*z^3): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 17 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 17 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form %Y A114499 Cf. A000108, A114500. %K A114499 nonn,tabf %O A114499 0,3 %A A114499 _Emeric Deutsch_, Dec 04 2005