cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114500 Number of Dyck paths of semilength n having no UUUDDD's starting at level zero; here U=(1,1), D=(1,-1). Also number of Dyck paths of semilength n having no UUDUDD's starting at level zero.

Original entry on oeis.org

1, 1, 2, 4, 12, 37, 119, 390, 1307, 4460, 15452, 54207, 192170, 687386, 2477810, 8992007, 32825653, 120460613, 444125661, 1644324767, 6111002752, 22789116600, 85251100275, 319826371389, 1203008722282, 4536009027311, 17141555233270
Offset: 0

Views

Author

Emeric Deutsch, Dec 04 2005

Keywords

Comments

Column 0 of A114499.

Examples

			a(4)=12 because among the 14 Dyck paths of semilength 4 only UDUUUDDD and UUUDDDUD contain UUUDDD starting at level 0.
		

Crossrefs

Cf. A114499.

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=1/(1-z*C+z^3): Gser:=series(G,z=0,35): 1,seq(coeff(Gser,z^n),n=1..30);
  • Mathematica
    CoefficientList[Series[1/(1-x*(1-Sqrt[1-4*x])/2/x+x^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    my(x='x+O('x^50)); Vec(2/(1+sqrt(1-4*x)+2*x^3)) \\ Jason Yuen, Sep 09 2024

Formula

G.f.: 1/(1 - z*C + z^3), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) ~ 4^(n+5)/(1089*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence +(n+1)*a(n) +2*(-2*n+1)*a(n-1) +(n+1)*a(n-2) +2*(-2*n+1)*a(n-3) +(n+1)*a(n-5) +2*(-2*n+1)*a(n-6)=0. - R. J. Mathar, Jul 26 2022