A114506 Triangle read by rows: T(n,k) is number of Dyck paths of semilength n having k ascents of length 3 (0<=k<=floor(n/3)). Also number of ordered trees with n edges that have k vertices of outdegree 3.
1, 1, 2, 4, 1, 10, 4, 27, 15, 79, 50, 3, 240, 168, 21, 750, 568, 112, 2387, 1959, 504, 12, 7711, 6850, 2115, 120, 25214, 24211, 8536, 825, 83315, 86164, 33858, 4620, 55, 277799, 308152, 133068, 23166, 715, 933596, 1106028, 520338, 108472, 6006
Offset: 0
Examples
T(4,1)=4 because we have UDUUUDDD, UUUDDDUD, UUUDUDDD and UUUDDUDD, where U=(1,1), D=(1,-1). Triangle starts: 1; 1; 2; 4,1; 10,4; 27,15; 79,50,3; 240,168,21;
Formula
G.f. G=G(t, z) satisfies (1-t)z^4*G^4-(1-t)z^3*G^3+zG^2-G+1=0.
Comments