cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114508 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having k ascents of length 4 (0<=k<=floor(n/4)). Also number of ordered trees with n edges which have k vertices of outdegree 4.

Original entry on oeis.org

1, 1, 2, 5, 13, 1, 37, 5, 111, 21, 345, 84, 1104, 322, 4, 3611, 1215, 36, 12016, 4555, 225, 40548, 17028, 1210, 138414, 63636, 5940, 22, 477076, 238004, 27534, 286, 1657956, 891268, 122850, 2366, 5802920, 3342375, 533625, 15925, 20436910, 12552580
Offset: 0

Views

Author

Emeric Deutsch, Dec 03 2005

Keywords

Comments

Row n has 1+floor(n/4) terms. Row sums yield the Catalan numbers (A000108). Column 0 yields A114509. Sum(kT(n,k),k=0..floor(n/4))=binomial(2n-5,n-4) (A002054).

Examples

			T(5,1)=5 because we have UDUUUUDDDD, UUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD and UUUUDUDDDD, where U=(1,1), D=(1,-1).
Triangle starts:
1;
1;
2;
5;
13,1;
37,5;
111,21;
345,84;
1104,322,4;
3611,1215,36;
		

Crossrefs

Programs

  • Maple
    Order:=20: Y:=solve(series((Y-Y^2)/(1-(1-t)*Y^4+(1-t)*Y^5),Y)=z,Y): 1; for n from 1 to 17 do seq(coeff(t*coeff(Y,z^(n+1)),t^j),j=1..1+floor(n/4)) od; # yields sequence in triangular form

Formula

G.f. G=G(t, z) satisfies (1-t)z^5*G^5-(1-t)z^4*G^4+zG^2-G+1=0.