A114508 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having k ascents of length 4 (0<=k<=floor(n/4)). Also number of ordered trees with n edges which have k vertices of outdegree 4.
1, 1, 2, 5, 13, 1, 37, 5, 111, 21, 345, 84, 1104, 322, 4, 3611, 1215, 36, 12016, 4555, 225, 40548, 17028, 1210, 138414, 63636, 5940, 22, 477076, 238004, 27534, 286, 1657956, 891268, 122850, 2366, 5802920, 3342375, 533625, 15925, 20436910, 12552580
Offset: 0
Examples
T(5,1)=5 because we have UDUUUUDDDD, UUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD and UUUUDUDDDD, where U=(1,1), D=(1,-1). Triangle starts: 1; 1; 2; 5; 13,1; 37,5; 111,21; 345,84; 1104,322,4; 3611,1215,36;
Programs
-
Maple
Order:=20: Y:=solve(series((Y-Y^2)/(1-(1-t)*Y^4+(1-t)*Y^5),Y)=z,Y): 1; for n from 1 to 17 do seq(coeff(t*coeff(Y,z^(n+1)),t^j),j=1..1+floor(n/4)) od; # yields sequence in triangular form
Formula
G.f. G=G(t, z) satisfies (1-t)z^5*G^5-(1-t)z^4*G^4+zG^2-G+1=0.
Comments