cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114537 Dispersion of the primes (an array read by downward antidiagonals).

This page as a plain text file.
%I A114537 #51 Jan 03 2020 19:47:15
%S A114537 1,2,4,3,7,6,5,17,13,8,11,59,41,19,9,31,277,179,67,23,10,127,1787,
%T A114537 1063,331,83,29,12,709,15299,8527,2221,431,109,37,14,5381,167449,
%U A114537 87803,19577,3001,599,157,43,15,52711,2269733,1128889,219613,27457,4397,919,191,47
%N A114537 Dispersion of the primes (an array read by downward antidiagonals).
%C A114537 A number is prime if and only if it does not lie in Column 1. As a sequence, a permutation of the natural numbers. The fractal sequence of this dispersion is A022447 and the transposition sequence is A114538.
%C A114537 The dispersion of the composite numbers is given at A114577.
%D A114537 Alexandrov, Lubomir. "On the nonasymptotic prime number distribution." arXiv preprint math/9811096 (1998). (See Appendix.)
%D A114537 Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria, 45 (1997) 157-168.
%H A114537 Robert G. Wilson v, <a href="/A114537/b114537.txt">Table of n, a(n) for n = 1..172</a>
%H A114537 Neil Fernandez, <a href="http://www.borve.org/primeness/FOP.html">An order of primeness, F(p)</a>
%H A114537 Neil Fernandez, <a href="/A006450/a006450.html">An order of primeness</a> [cached copy, included with permission of the author]
%H A114537 Neil Fernandez, <a href="http://www.borve.org/primeness/intro.html">The Exploring Primeness Project</a>
%H A114537 Clark Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/intersp.html">Interspersions and Dispersions</a>.
%H A114537 Clark Kimberling, <a href="http://dx.doi.org/10.1090/S0002-9939-1993-1111434-0">Interspersions and dispersions</a>, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
%H A114537 Robert G. Wilson v, <a href="/A114537/a114537_2.txt">The Northwest Corner of the Primeness Array (24 x 24).</a>
%F A114537 T(r,1) = A018252(r). T(r,c) = prime(T(r,c-1)), c>1. [_R. J. Mathar_, Oct 22 2010]
%e A114537 Northwest corner of the Primeness array:
%e A114537 1   2   3    5    11     31     127       709       5381       52711        648391
%e A114537 4   7  17   59   277   1787   15299    167449    2269733    37139213     718064159
%e A114537 6  13  41  179  1063   8527   87803   1128889   17624813   326851121    7069067389
%e A114537 8  19  67  331  2221  19577  219613   3042161   50728129   997525853   22742734291
%e A114537 9  23  83  431  3001  27457  318211   4535189   77557187  1559861749   36294260117
%e A114537 10  29 109  599  4397  42043  506683   7474967  131807699  2724711961   64988430769
%e A114537 12  37 157  919  7193  72727  919913  14161729  259336153  5545806481  136395369829
%e A114537 14  43 191 1153  9319  96797 1254739  19734581  368345293  8012791231  200147986693
%e A114537 15  47 211 1297 10631 112129 1471343  23391799  440817757  9672485827  243504973489
%e A114537 16  53 241 1523 12763 137077 1828669  29499439  563167303 12501968177  318083817907
%e A114537 18  61 283 1847 15823 173867 2364361  38790341  751783477 16917026909  435748987787
%e A114537 20  71 353 2381 21179 239489 3338989  56011909 1107276647 25366202179  664090238153
%e A114537 21  73 367 2477 22093 250751 3509299  59053067 1170710369 26887732891  705555301183
%e A114537 22  79 401 2749 24859 285191 4030889  68425619 1367161723 31621854169  835122557939
%e A114537 24  89 461 3259 30133 352007 5054303  87019979 1760768239 41192432219 1099216100167
%e A114537 25  97 509 3637 33967 401519 5823667 101146501 2062666783 48596930311 1305164025929
%e A114537 26 101 547 3943 37217 443419 6478961 113256643 2323114841 55022031709 1484830174901
%e A114537 27 103 563 4091 38833 464939 6816631 119535373 2458721501 58379844161 1579041544637
%p A114537 A114537 := proc(r,c) option remember; if c = 1 then A018252(r) ; else ithprime(procname(r,c-1)) ; end if; end proc: # _R. J. Mathar_, Oct 22 2010
%t A114537 NonPrime[n_] := FixedPoint[n + PrimePi@# + 1 &, n]; t[n_, k_] := Nest[Prime, NonPrime[n], k]; Table[ t[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten
%t A114537 (* or to view the table *) Table[t[n, k], {n, 0, 6}, {k, 0, 10}] // TableForm (* _Robert G. Wilson v_, Dec 26 2005 *)
%Y A114537 Columns 1-13: A018252, A007821, A049078, A049079, A049080, A049081, A058322, A058324, A058325, A058326, A058327, A058328, A093046.
%Y A114537 Rows 1-7: A007097, A057450, A057451, A057452, A057453, A057456, A057457.
%Y A114537 Diagonal: A181441.
%Y A114537 Cf. A000040, A007821, A114538, A006450.
%Y A114537 If the antidiagonals are read in the opposite direction we get A138947.
%K A114537 nonn,tabl,nice
%O A114537 1,2
%A A114537 _Clark Kimberling_, Dec 07 2005