This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114576 #5 Dec 29 2023 12:59:55 %S A114576 1,1,2,3,1,6,3,11,10,23,26,2,47,70,10,102,176,45,221,449,160,5,493, %T A114576 1121,539,35,1105,2817,1680,196,2516,7031,5082,868,14,5763,17604, %U A114576 14856,3486,126,13328,43996,42660,12810,840,30995,110147,120338,44640,4410,42 %N A114576 Triangle read by rows: T(n,k) is number of Motzkin paths of length n having k UH's, where U=(1,1), H=(1,0) (0<=k<=floor(n/3)). %C A114576 Row n contains 1+floor(n/3) terms. Row sums are the Motzkin numbers (A001006). Column 0 yields A090344. Sum(k*T(n,k),k=0..floor(n/3))=A014531(n-2). %F A114576 G.f.=[1-z-sqrt(1-2z-3z^2-4tz^3+4z^3)]/[2(1-z+tz)z^2]. %e A114576 T(4,1)=3 because we have H(UH)D, (UH)DH and (UH)HD, where U=(1,1), H=(1,0), D=(1,-1) (the UH's are shown between parentheses). %e A114576 Triangle begins: %e A114576 1; %e A114576 1; %e A114576 2; %e A114576 3,1; %e A114576 6,3; %e A114576 11,10; %e A114576 23,26,2; %e A114576 47,70,10; %p A114576 G:=(1-z-sqrt(1-2*z-3*z^2-4*z^3*t+4*z^3))/2/z^2/(1-z+t*z): Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 16 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form %Y A114576 Cf. A001006, A090344, A014531. %K A114576 nonn,tabf %O A114576 0,3 %A A114576 _Emeric Deutsch_, Dec 09 2005