cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114590 Number of peaks at even levels in all hill-free Dyck paths of semilength n+2 (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

1, 2, 8, 28, 103, 382, 1432, 5408, 20546, 78436, 300636, 1156188, 4459267, 17241526, 66807856, 259361920, 1008598126, 3928120924, 15319329472, 59817190552, 233826979750, 914962032172, 3583556424208, 14047386554368, 55108441878868
Offset: 0

Views

Author

Emeric Deutsch, Dec 11 2005

Keywords

Examples

			a(1)=2 because in the 2 (=A000957(4)) hill-free Dyck paths of semilength 3, namely UUUDDD and U(UD)(UD)D (U=(1,1), D=(1,-1)) we have altogether 2 peaks at even level (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    G:=(1+2*z^2-(1+2*z)*sqrt(1-4*z))/2/z^2/(2+z)^2/sqrt(1-4*z): Gser:=series(G,z=0,30): 1, seq(coeff(Gser,z^n),n=1..25);
  • Mathematica
    CoefficientList[Series[(1+2*x^2-(1+2*x)*Sqrt[1-4*x])/2/x^2/(2+x)^2/Sqrt[1-4*x], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: (1+2*z^2-(1+2*z)*sqrt(1-4*z))/(2*z^2*(2+z)^2*sqrt(1-4*z)).
a(n) = sum(k*A114588(n+2,k),k=0..n+1).
a(n)=sum{k=0..n, sum{j=0..n-k, C(n-j,k-j)*C(n-j,k)*(j+1)}}; - Paul Barry, Nov 03 2006
Conjecture: 2*(n+2)*a(n) +(-7*n-9)*a(n-1) -18*a(n-2) +2*(-7*n+19)*a(n-3) +4*(-2*n+3)*a(n-4)=0. - R. J. Mathar, Nov 15 2012
Recurrence: 2*n*(n+2)*(3*n+1)*a(n) = (21*n^3 + 34*n^2 + n - 8)*a(n-1) + 2*(n+1)*(2*n+1)*(3*n+4)*a(n-2). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ 4^(n+2) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014