A114608 Triangle read by rows: T(n,k) is the number of bicolored Dyck paths of semilength n and having k peaks of the form ud (0 <= k <= n). A bicolored Dyck path is a Dyck path in which each up-step is of two kinds: u and U.
1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 45, 96, 66, 16, 1, 197, 501, 450, 170, 25, 1, 903, 2668, 2955, 1520, 365, 36, 1, 4279, 14407, 18963, 12355, 4165, 693, 49, 1, 20793, 78592, 119812, 94528, 41230, 9856, 1204, 64, 1, 103049, 432073, 748548, 693588, 372078, 117054
Offset: 0
Examples
T(3,2)=9 because we have (ud)(ud)Ud, (ud)Ud(ud), Ud(ud)(ud), (ud)u(ud)d, (ud)U(ud)d, u(ud)d(ud), U(ud)d(ud), u(ud)(ud)d and U(ud)(ud)d (the ud peaks are shown between parentheses). Triangle starts: 1; 1, 1; 3, 4, 1; 11, 19, 9, 1; 45, 96, 66, 16, 1;
Links
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
Programs
-
Maple
T:=proc(n,k) if k<=n-1 then (1/n)*binomial(n,k)*sum(2^j*binomial(n,j+1)*binomial(n-k,j),j=0..n-k) elif k=n then 1 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := If[k <= n-1, (1/n)*Binomial[n, k]*Sum[2^j*Binomial[n, j+1]* Binomial[n-k, j], {j, 0, n-k}], If[k == n, 1, 0]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 11 2018, from Maple *)
Formula
T(n,k) = (1/n)*binomial(n,k)*Sum_{j=0..n-k} 2^j*binomial(n, j+1)*binomial(n-k, j) (k <= n-1); T(n, n)=1.
G.f. = G = G(t, z) satisfies G = 1 + z*(G-1+t)*G + z*G^2.
Comments