This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114639 #17 Jul 07 2020 06:05:58 %S A114639 1,0,2,2,2,3,5,4,7,7,13,16,19,23,33,34,44,58,63,80,101,112,139,171, %T A114639 196,234,288,328,394,478,545,658,777,881,1050,1236,1414,1666,1936, %U A114639 2216,2592,3018,3428,3992,4604,5243,6069,6986,7951,9139,10447,11892,13625 %N A114639 Number of partitions of n such that the set of parts and the set of multiplicities of parts are disjoint. %C A114639 The Heinz numbers of these partitions are given by A325131. - _Gus Wiseman_, Apr 02 2019 %H A114639 Alois P. Heinz, <a href="/A114639/b114639.txt">Table of n, a(n) for n = 0..100</a> %e A114639 From _Gus Wiseman_, Apr 02 2019: (Start) %e A114639 The a(2) = 2 through a(9) = 7 partitions: %e A114639 (2) (3) (4) (5) (6) (7) (8) (9) %e A114639 (11) (111) (1111) (32) (33) (43) (44) (54) %e A114639 (11111) (42) (52) (53) (63) %e A114639 (222) (1111111) (62) (72) %e A114639 (111111) (2222) (432) %e A114639 (3311) (222111) %e A114639 (11111111) (111111111) %e A114639 (End) %p A114639 b:= proc(n, i, p, m) option remember; `if`(n=0, 1, %p A114639 `if`(i<1, 0, b(n, i-1, p, select(x-> x<i, m))+ %p A114639 add(`if`(i=j or i in m or j in p, 0, b(n-i*j, i-1, %p A114639 select(x-> x<=n-i*j, p union {i}), %p A114639 select(x-> x<i, m union {j}))), j=1..n/i))) %p A114639 end: %p A114639 a:= n-> b(n$2, {}$2): %p A114639 seq(a(n), n=0..40); # _Alois P. Heinz_, Aug 09 2016 %t A114639 b[n_, i_, p_, m_] := b[n, i, p, m] = If[n == 0, 1, If[i<1, 0, b[n, i-1, p, Select[m, #<i&]] + Sum[If[i == j || MemberQ[m, i] || MemberQ[p, j], 0, b[n-i*j, i-1, Select[ p ~Union~ {i}, # <= n-i*j&], Select[m ~Union~ {j}, #<i&]]], {j, 1, n/i}]]]; a[n_] := b[n, n, {}, {}]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 05 2017, after _Alois P. Heinz_ *) %t A114639 Table[Length[Select[IntegerPartitions[n],Intersection[#,Length/@Split[#]]=={}&]],{n,0,30}] (* _Gus Wiseman_, Apr 02 2019 *) %Y A114639 Cf. A052335, A087153, A114640, A115584, A117144, A276429, A324572, A325130, A325131, A336032. %K A114639 nonn %O A114639 0,3 %A A114639 _Vladeta Jovovic_, Feb 18 2006 %E A114639 a(0)=1 prepended and more terms from _Alois P. Heinz_, Aug 09 2016