cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114656 Triangle read by rows: T(n,k) is the number of double rise-bicolored Dyck paths (double rises come in two colors; also called marked Dyck paths) of semilength n and having k peaks (1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 24, 12, 1, 16, 80, 80, 20, 1, 32, 240, 400, 200, 30, 1, 64, 672, 1680, 1400, 420, 42, 1, 128, 1792, 6272, 7840, 3920, 784, 56, 1, 256, 4608, 21504, 37632, 28224, 9408, 1344, 72, 1, 512, 11520, 69120, 161280, 169344, 84672, 20160, 2160, 90
Offset: 1

Views

Author

Emeric Deutsch, Dec 23 2005

Keywords

Comments

Row sums are the little Schroeder numbers (A001003). Sum_{k=1..n} k*T(n,k) = A047781(n). T(n,k) = (1/2)A114655(n,k).
Triangle T(n,k), 1 <= k <= n, given by [0,2,0,2,0,2,0,2,0,2,0,2,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 02 2009

Examples

			T(3,2)=6 because we have (UD)Ub(UD)D, (UD)Ur(UD)D, Ub(UD)D(UD), Ur(UD)D(UD), Ub(UD)(UD)D and Ur(UD)(UD)D, where U=(1,1), D=(1,-1) and b (r) indicates a blue (red) double rise (the peaks are shown between parentheses).
Triangle begins:
   1;
   2,  1;
   4,  6,  1;
   8, 24, 12,  1;
  16, 80, 80, 20,  1;
  ....
Triangle T(n,k), 0 <= k <= n, given by [0,2,0,2,0,2,0,2,...] DELTA [1,0,1,0,1,0,1,0,1,0,...] begins: 1; 0,1; 0,2,1; 0,4,6,1; 0,8,24,12,1; 0,16,80,80,20,1; ... - _Philippe Deléham_, Jan 02 2009
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->2^(n-k)*binomial(n,k)*binomial(n,k-1)/n: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    Table[2^(n - k) Binomial[n, k] Binomial[n, k - 1]/n, {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Apr 23 2019 *)

Formula

T(n, k) = 2^(n-k)*binomial(n, k)*binomial(n, k-1)/n.
G.f.: G = G(t, z) satisfies G = z(2G+t)(G+1).
T(n,k) = A001263(n,k)*2^(n-k). - Philippe Deléham, Apr 11 2007
G.f.: 1/(1-xy/(1-2x/(1-xy/(1-2x/(1-xy/(1-2x/(1-..... (continued fraction). - Paul Barry, Feb 06 2009