This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114714 #27 Oct 27 2023 21:55:42 %S A114714 1,2,48,2452,183958,17454844,1941406508,242201554680,32959299267334, %T A114714 4801233680739724,738810565910888784,118929992674840615128, %U A114714 19880920716640427983476,3431624482227380273056728,608880419873586515669564728,110654016191338341346670548240 %N A114714 Number of linear extensions of a 2 X 2 X n lattice. %C A114714 The additional terms were found using dynamic programming to count the maximal chains in the distributive lattice of order-preserving functions from the chain of length n to J(P), where J is the lattice of downsets of the poset P = 2x2. - _Nick Krempel_, Jul 08 2010 %D A114714 Stanley, R., Enumerative Combinatorics, Vol. 2, Prop. 7.10.3 and Vol. 1, Sec 3.5, Chains in Distributive Lattices. %H A114714 Alois P. Heinz, <a href="/A114714/b114714.txt">Table of n, a(n) for n = 0..180</a> (first 41 terms from Nick Krempel) %p A114714 b:= proc(x, y, u, w) option remember; %p A114714 `if`(x=0 and y=0 and u=0 and w=0, 1, `if`(x>y and x>u, %p A114714 b(x-1, y, u, w), 0)+ `if`(y>w, b(x, y-1, u, w), 0)+ %p A114714 `if`(u>w, b(x, y, u-1, w), 0)+ `if`(w>0, b(x, y, u, w-1), 0)) %p A114714 end: %p A114714 a:= n-> b(n$4): %p A114714 seq(a(n), n=0..20); # _Alois P. Heinz_, Apr 27 2012 %t A114714 b[x_, y_, u_, w_] := b[x, y, u, w] = If[x == 0 && y == 0 && u == 0 && w == 0, 1, If[x>y && x>u, b[x-1, y, u, w], 0] + If[y>w, b[x, y-1, u, w], 0] + If[u>w, b[x, y, u-1, w], 0] + If[w>0, b[x, y, u, w-1], 0]]; a[n_] := b[n, n, n, n]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, May 29 2015, after _Alois P. Heinz_ *) %Y A114714 Cf. A114717. %K A114714 nonn,hard %O A114714 0,2 %A A114714 _Mitch Harris_, Dec 27 2005 %E A114714 More terms from _Nick Krempel_, Jul 08 2010