cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114717 Number of linear extensions of the divisor lattice of n.

This page as a plain text file.
%I A114717 #42 Aug 06 2024 09:48:35
%S A114717 1,1,1,1,1,2,1,1,1,2,1,5,1,2,2,1,1,5,1,5,2,2,1,14,1,2,1,5,1,48,1,1,2,
%T A114717 2,2,42,1,2,2,14,1,48,1,5,5,2,1,42,1,5,2,5,1,14,2,14,2,2,1,2452,1,2,5,
%U A114717 1,2,48,1,5,2,48,1,462,1,2,5,5,2,48,1,42,1,2,1,2452,2,2,2,14,1,2452,2
%N A114717 Number of linear extensions of the divisor lattice of n.
%C A114717 Notice that only the powers of the primes determine a(n), so a(12) = a(75) = 5.
%C A114717 For prime powers, the lattice is a chain, so there is 1 linear extension.
%C A114717 a(p^1*q^n) = A000108(n+1), the Catalan numbers.
%C A114717 Alternatively, the number of ways to arrange the divisors of n in such a way that no divisor has any of its own divisors following it. E.g., for 12, the following five arrangements are possible: 1,2,3,4,6,12; 1,2,3,6,4,12; 1,2,4,3,6,12; 1,3,2,4,6,12 and 1,3,2,6,4,12. But 1,2,6,4,3,12 is not possible because 3 divides 6 but follows it. Thus a(12)=5. - _Antti Karttunen_, Jan 11 2006
%C A114717 For n = p1^r1 * p2^r2, the lattice is a grid (r1+1)*(r2+1), whose linear extensions are counted by ((r1+1)*(r2+1))!/Product_{k=0..r2} (r1+1+k)!/k!. Cf. A060854.
%D A114717 R. Stanley, Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.
%H A114717 Alois P. Heinz, <a href="/A114717/b114717.txt">Table of n, a(n) for n = 1..10000</a>
%H A114717 Graham Brightwell and Peter Winkler, <a href="https://doi.org/10.1007/BF00383444">Counting linear extensions</a>, Order 8 (1991), no. 3, 225-242.
%H A114717 Gary Pruesse and Frank Ruskey, <a href="https://citeseerx.ist.psu.edu/pdf/5e4ca7226502b6627dba415e1df2092888ed206d">Generating linear extensions fast</a>, SIAM J. Comput. 23 (1994), no. 2, 373-386.
%H A114717 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%p A114717 with(numtheory):
%p A114717 b:= proc(s) option remember;
%p A114717       `if`(nops(s)<2, 1, add(`if`(nops(select(y->
%p A114717        irem(y, x)=0, s))=1, b(s minus {x}), 0), x=s))
%p A114717     end:
%p A114717 a:= proc(n) local l, m;
%p A114717       l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
%p A114717       m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
%p A114717       b(divisors(m) minus {1, m})
%p A114717     end:
%p A114717 seq(a(n), n=1..100);  # _Alois P. Heinz_, Jun 29 2012
%t A114717 b[s_List] := b[s] = If[Length[s]<2, 1, Sum[If[Length[Select[s, Mod[#, x] == 0 &]] == 1, b[Complement[s, {x}]], 0], {x, s}]]; a[n_] := Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m] // Rest // Most]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, May 28 2015, after _Alois P. Heinz_ *)
%Y A114717 Cf. A060854, A114714, A114715, A114716, A119842.
%K A114717 nonn
%O A114717 1,6
%A A114717 _Mitch Harris_ and _Antti Karttunen_, Dec 27 2005