cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114765 a(n) = floor(sqrt(7) * 10^n)^2.

This page as a plain text file.
%I A114765 #20 Sep 08 2022 08:45:23
%S A114765 4,676,69696,6996025,699972849,69999930625,6999998354001,
%T A114765 699999994145169,69999999943667161,6999999999658218721,
%U A114765 699999999965821872100,69999999999757088783236,6999999999996874888812096,699999999999952064012316025,69999999999999968753591518681
%N A114765 a(n) = floor(sqrt(7) * 10^n)^2.
%C A114765 Largest square less than 7 * 10^(2n).
%H A114765 Andrew Howroyd, <a href="/A114765/b114765.txt">Table of n, a(n) for n = 0..100</a>
%e A114765 sqrt(7) = 2.645751311...
%e A114765 floor(sqrt(7) * 10) = 26 and 26^2 = 676, so a(1) = 676.
%e A114765 floor(sqrt(7) * 100) = 264 and 264^2 = 69696, so a(2) = 69696.
%e A114765 floor(sqrt(7) * 1000) = 2645 and 2645^2 = 6996025, so a(3) = 6996025.
%t A114765 $MaxExtraPrecision := 200; Table[Floor[7^(1/2) * 10^n]^2, {n, 0, 20}] (* _Stefan Steinerberger_, Jan 26 2006 *)
%o A114765 (Magma) [Floor(7^(1/2)*10^n)^2: n in [0..150]]; // _Vincenzo Librandi_, Feb 05 2011
%o A114765 (PARI) a(n)={sqrtint(7*10^(2*n))^2} \\ _Andrew Howroyd_, Nov 09 2019
%Y A114765 Cf. A114761, A114762, A114763, A114764.
%Y A114765 Cf. A010465 (sqrt(7)).
%K A114765 nonn
%O A114765 0,1
%A A114765 _Amarnath Murthy_, Nov 17 2005
%E A114765 More terms from _Stefan Steinerberger_, Jan 26 2006
%E A114765 Terms a(12) and beyond from _Andrew Howroyd_, Nov 09 2019