This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114805 #12 Sep 08 2022 08:45:23 %S A114805 1,2,4,7,11,16,22,36,60,96,146,212,380,692,1196,1946,3002,5858,11474, %T A114805 21050,36050,58226,121058,250226,480050,855050,1431626,3128090, %U A114805 6744794,13409690,24659690,42533546,96820394,216171626,442778090,836528090 %N A114805 Cumulative sum of quintuple factorial numbers n!!!!! (A085157). %C A114805 a(1) = 2 is prime; a(3) = 7 is prime; a(4) = 11 is prime; and there are no more primes in the sequence. Semiprime values are: a(2) = 4 = 2^2, a(6) = 22, a(10) = 146 = 2 * 73, a(18) = 11474 = 2 * 5737, a(23) = 250226 = 2 * 125113. %H A114805 G. C. Greubel, <a href="/A114805/b114805.txt">Table of n, a(n) for n = 0..1000</a> %F A114805 a(n) = Sum_{j=0..n} j!5. %F A114805 a(n) = Sum_{j=0..n} j!!!!!. %F A114805 a(n) = Sum_{j=0..n} A085157(j). %e A114805 a(10) = 0!5 + 1!5 + 2!5 + 3!5 + 4!5 + 5!5 + 6!5 + 7!5 + 8!5 + 9!5 + 10!5 = %e A114805 1 + 1 + 2 + 3 + 4 + 5 + 6 + 14 + 24 + 36 + 50 = 146 = 2 * 73. %p A114805 b:= n-> `if`(n < 1, 1, n*b(n-5)); a:= n-> sum(b(j), j = 0..n); seq(a(n), n = 0..40); # _G. C. Greubel_, Aug 21 2019 %t A114805 f5[0]=1; f5[n_]:= f5[n]= If[n<=6, n, n f5[n-5]]; Accumulate[f5/@Range[0, 35]] (* _Giovanni Resta_, Jun 15 2016 *) %o A114805 (PARI) b(n)=if(n<1, 1, n*b(n-5)); %o A114805 vector(40, n, n--; sum(j=0,n, b(j)) ) \\ _G. C. Greubel_, Aug 21 2019 %o A114805 (Magma) b:= func< n | n eq 0 select 1 else (n lt 6) select n else n*Self(n-5) >; %o A114805 [(&+[b(j): j in [0..n]]): n in [0..40]]; // _G. C. Greubel_, Aug 21 2019 %o A114805 (Sage) %o A114805 @CachedFunction %o A114805 def b(n): %o A114805 if (n<1): return 1 %o A114805 else: return n*b(n-5) %o A114805 [sum(b(j) for j in (0..n)) for n in (0..40)] # _G. C. Greubel_, Aug 21 2019 %o A114805 (GAP) %o A114805 b:= function(n) %o A114805 if n<1 then return 1; %o A114805 else return n*b(n-5); %o A114805 fi; %o A114805 end; %o A114805 List([0..40], n-> Sum([0..n], j-> b(j)) ); # _G. C. Greubel_, Aug 21 2019 %Y A114805 Cf. A007662, A085157, A114347. %K A114805 easy,nonn %O A114805 0,2 %A A114805 _Jonathan Vos Post_, Feb 18 2006