This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114823 #51 May 05 2024 19:19:25 %S A114823 120,200,220,228,260,368,392,405,414,434,472,492,512,536,584,585,595, %T A114823 610,615,618,645,654,693,741,762,777,830,867,894,904,931,942,957,962, %U A114823 978,1045,1066,1070,1074,1102,1106,1108,1147,1194,1209,1266,1268,1309,1310,1317 %N A114823 Indices of Fibonacci numbers with 13 distinct prime factors. %C A114823 From _Robert Israel_, Aug 18 2015: (Start) %C A114823 Numbers n such that A022307(n) = 13. %C A114823 If n is in the sequence, then k*n is not in the sequence for k > 1. %C A114823 This is because A000045(n) divides A000045(k*n) while Carmichael's theorem says A000045(k*n) has at least one primitive prime factor. (End) %H A114823 Amiram Eldar, <a href="/A114823/b114823.txt">Table of n, a(n) for n = 1..54</a> %H A114823 Blair Kelly, <a href="http://mersennus.net/fibonacci/">Fibonacci and Lucas Factorizations</a>. %e A114823 a(1)=120 because the 120th Fibonacci number consists of 13 distinct prime factors (i.e., 5358359254990966640871840 = 2^5 * 3^2 * 5 * 7 * 11 * 23 * 31 * 41 * 61 * 241 * 2161 * 2521 * 20641). %p A114823 select(t -> nops(numtheory:-factorset(combinat:-fibonacci(t)))=13, [$1..1000]); # _Robert Israel_, Aug 10 2015 %t A114823 Select[Range[1250], PrimeNu[Fibonacci[#]]==13&] (* _Harvey P. Dale_, Apr 30 2015 *) %o A114823 (PARI) n=1;while(n<265,if(omega(fibonacci(n))==13,print1(n,", "));n++) %o A114823 (SageMath) %o A114823 for n in range(1,3*10^2): %o A114823 if len(prime_factors(fibonacci(n)))==13: %o A114823 print(n) # _Manfred Scheucher_, Aug 04 2015 %o A114823 (Magma) [n: n in [1..3*10^2] |(#(PrimeDivisors(Fibonacci(n)))) eq 13]; // _Vincenzo Librandi_, Aug 05 2015 %Y A114823 Cf. A000045, A001221, A022307. %Y A114823 Column k=13 of A303217. %K A114823 hard,nonn %O A114823 1,1 %A A114823 _Shyam Sunder Gupta_, Feb 19 2006 %E A114823 More terms from _Ryan Propper_, Apr 26 2006 %E A114823 a(36)-a(45) from _Max Alekseyev_, Aug 18 2013 %E A114823 a(46)-a(50) from _Amiram Eldar_, Oct 14 2019