cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114829 Each term is previous term plus floor of geometric mean of all previous terms.

This page as a plain text file.
%I A114829 #19 Feb 16 2025 08:33:00
%S A114829 1,2,3,4,6,8,11,14,18,23,29,36,44,53,63,74,87,101,117,135,155,177,201,
%T A114829 227,256,287,321,358,398,442,489,540,595,654,717,785,858,936,1019,
%U A114829 1107,1201,1301,1408,1521,1641,1768,1903,2046,2197,2356,2524,2701,2888,3085,3292,3510,3739,3979,4231
%N A114829 Each term is previous term plus floor of geometric mean of all previous terms.
%C A114829 What is this sequence, asymptotically?
%H A114829 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GeometricMean.html">Geometric Mean.</a>
%F A114829 a(1) = 1, a(n+1) = a(n) + floor(GeometricMean[a(1),a(2),...,a(n)]).
%F A114829 a(n+1) = a(n) + floor((Product_{k=1..n} a(k))^(1/n)).
%e A114829 a(2) = 1 + floor(1^(1/1)) = 1 + 1 = 2.
%e A114829 a(3) = 2 + floor[(1*2)^(1/2)] = 2 + floor[sqrt(2)] = 2 + 1 = 3.
%e A114829 a(4) = 3 + floor[(1*2*3)^(1/3)] = 3 + floor[CubeRoot(6)] = 3 + 1 = 4.
%e A114829 a(5) = 4 + floor[(1*2*3*4)^(1/4)] = 4 + floor[4thRoot(24)] = 4 + 2 = 6.
%e A114829 a(6) = 6 + floor[(1*2*3*4*6)^(1/5)] = 6 + floor[5thRoot(144)] = 6 + 2 = 8.
%e A114829 a(7) = 8 + floor[(1*2*3*4*6*8)^(1/6)] = 6 + floor[6thRoot(1152)] = 8 + 3 = 11.
%p A114829 A114829 := proc(n)
%p A114829     option remember;
%p A114829     if n= 1 then
%p A114829         1;
%p A114829     else
%p A114829         mul(procname(i),i=1..n-1) ;
%p A114829         procname(n-1)+floor(root[n-1](%)) ;
%p A114829     end if;
%p A114829 end proc:
%p A114829 seq(A114829(n),n=1..60) ; # _R. J. Mathar_, Jun 23 2014
%t A114829 s={1};Do[AppendTo[s,Last[s]+Floor[GeometricMean[s]]],{n,58}];s (* _James C. McMahon_, Aug 19 2024 *)
%Y A114829 Cf. A065094, A065095.
%K A114829 easy,nonn
%O A114829 1,2
%A A114829 _Jonathan Vos Post_, Feb 19 2006