cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114830 Each term is previous term plus ceiling of geometric mean of all previous terms.

This page as a plain text file.
%I A114830 #21 Feb 16 2025 08:33:00
%S A114830 1,2,4,6,9,13,18,24,31,39,48,59,71,85,101,119,139,162,187,215,246,280,
%T A114830 318,359,404,453,507,565,628,697,771,851,937,1029,1128,1234,1348,1470,
%U A114830 1600,1738,1885,2042,2209,2386,2574,2773,2984,3207,3443,3692,3955,4232,4524,4831,5154,5494,5851,6226,6620
%N A114830 Each term is previous term plus ceiling of geometric mean of all previous terms.
%C A114830 What is this sequence, asymptotically?
%H A114830 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GeometricMean.html">Geometric Mean</a>.
%F A114830 a(1) = 1, a(n+1) = a(n) + ceiling(GeometricMean[a(1),a(2),...,a(n)]).
%F A114830 a(n+1) = a(n) + ceiling((Product_{k=1..n} a(k))^(1/n)).
%e A114830 a(2) = 1 + ceiling(1^(1/1)) = 1 + 1 = 2.
%e A114830 a(3) = 2 + ceiling[(1*2)^(1/2)] = 2 + ceiling[sqrt(2)] = 2 + 2 = 4.
%e A114830 a(4) = 4 + ceiling[(1*2*4)^(1/3)] = 4 + ceiling[CubeRoot(8)] = 4 + 2 = 6.
%e A114830 a(5) = 6 + ceiling[(1*2*4*6)^(1/4)] = 6 + floor[4thRoot(48)] = 6 + 3 = 9.
%e A114830 a(6) = 9 + ceiling[(1*2*4*6*9)^(1/5)] = 9 + ceiling[5thRoot(432)] = 9 + 4 = 13.
%e A114830 a(7) = 13 + ceiling[(1*2*4*6*9*13)^(1/6)] = 6 + floor[6thRoot(5616)] = 13 + 5 = 18.
%e A114830 a(25) = 359 + ceiling[(1 * 2 * 4 * 6 * 9 * 13 * 18 * 24 * 31 * 39 * 48 * 59 * 71 * 85 * 101 * 119 * 139 * 162 * 187 * 215 * 246 * 280 * 318 * 359)^(1/24)] = 359 + ceiling[44.8074289] = 359 + 45 = 404.
%p A114830 A114830 := proc(n)
%p A114830     option remember;
%p A114830     if n= 1 then
%p A114830         1;
%p A114830     else
%p A114830         mul(procname(i),i=1..n-1) ;
%p A114830         procname(n-1)+ceil(root[n-1](%)) ;
%p A114830     end if;
%p A114830 end proc:
%p A114830 seq(A114830(n),n=1..60) ; # _R. J. Mathar_, Jun 23 2014
%t A114830 Nest[Append[#,Last[#]+Ceiling@GeometricMean[#]]&,{1},58] (* _James C. McMahon_, Aug 20 2024 *)
%Y A114830 Cf. A065094, A065095.
%K A114830 easy,nonn
%O A114830 1,2
%A A114830 _Jonathan Vos Post_, Feb 19 2006