cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114831 Each term is previous term plus floor of harmonic mean of two previous terms.

This page as a plain text file.
%I A114831 #21 Feb 16 2025 08:33:00
%S A114831 1,2,3,5,8,14,24,41,71,122,211,365,632,1094,1895,3282,5684,9845,17052,
%T A114831 29534,51154,88601,153461,265802,460382,797405,1381145,2392213,
%U A114831 4143434,7176638,12430301,21529913,37290903,64589738,111872708,193769214,335618123,581307641,1006854369,1743922922
%N A114831 Each term is previous term plus floor of harmonic mean of two previous terms.
%C A114831 For two numbers x and y, HarmonicMean[x,y] = [(GeometricMean[x,y])^2] / Arithmetic Mean[x,y].
%C A114831 What is this sequence, asymptotically?
%H A114831 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HarmonicMean.html">Harmonic Mean.</a>
%H A114831 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GeometricMean.html">Geometric Mean.</a>
%F A114831 a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(HarmonicMean[a(n),a(n-1)]). a(n+1) = a(n) + floor[(2*a(n)*a(n-1))/(a(n)+a(n-1))].
%e A114831 a(3) = 2 + floor(2*1*2/(1+2)) = 2 + floor(4/3) = 2 + 1 = 3.
%e A114831 a(4) = 3 + floor(2*2*3/(2+3)) = 3 + floor(12/5) = 3 + 2 = 5.
%e A114831 a(5) = 5 + floor(2*3*5/(3+5)) = 5 + floor(30/8) = 5 + 3 = 8.
%e A114831 a(6) = 8 + floor(2*5*8/(5+8)) = 8 + floor(80/13) = 8 + 6 = 14.
%e A114831 a(7) = 14 + floor(2*8*14/(8+14)) = 14 + floor(112/11) = 14 + 10 = 24.
%p A114831 hMean := proc(a,b)
%p A114831     2*a*b/(a+b) ;
%p A114831 end proc:
%p A114831 A114831 := proc(n)
%p A114831     option remember;
%p A114831     if n<= 2 then
%p A114831         n;
%p A114831     else
%p A114831         procname(n-1)+floor(hMean(procname(n-1),procname(n-2))) ;
%p A114831     end if;
%p A114831 end proc:
%p A114831 seq(A114831(n),n=1..60) ; # _R. J. Mathar_, Jun 23 2014
%Y A114831 Cf. A065094, A065095.
%K A114831 nonn,easy
%O A114831 1,2
%A A114831 _Jonathan Vos Post_, Feb 19 2006
%E A114831 Corrected by _R. J. Mathar_, Jun 23 2014
%E A114831 Typo in a(40) corrected by _Seth A. Troisi_, May 13 2022