cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114832 Each term is previous term plus ceiling of harmonic mean of two previous terms.

This page as a plain text file.
%I A114832 #9 Feb 16 2025 08:33:00
%S A114832 1,2,4,7,13,23,40,70,121,210,364,631,1093,1894,3281,5683,9844,17050,
%T A114832 29532,51151,88597,153455,265792,460366,797377,1381098,2392132,
%U A114832 4143295,7176398,12429886,21529195,37289660,64587586,111868981,193762759
%N A114832 Each term is previous term plus ceiling of harmonic mean of two previous terms.
%C A114832 For two numbers x and y, HarmonicMean[x,y] = [(GeometricMean[x,y])^2] / Arithmetic Mean[x,y]. What is this sequence, asymptotically? a(n) is prime for n = 2, 4, 5, 6, 12, ... are there an infinite number of prime values?
%H A114832 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HarmonicMean.html">Harmonic Mean.</a>
%H A114832 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GeometricMean.html">Geometric Mean.</a>
%F A114832 a(1) = 1, a(2) = 2, for n > 2: a(n+1) = a(n) + ceiling(HarmonicMean(a(n), a(n-1))). a(n+1) = a(n) + ceiling((2*a(n)*a(n-1))/(a(n) + a(n-1))).
%e A114832 a(3) = 2 + ceiling(2*1*2/(1+2)) = 2 + ceiling(4/3) = 2 + 2 = 4.
%e A114832 a(4) = 4 + ceiling(2*2*4/(2+4)) = 4 + ceiling(16/6) = 4 + 3 = 7.
%e A114832 a(5) = 7 + ceiling(2*4*7/(4+7)) = 7 + ceiling(56/8) = 7 + 6 = 13.
%e A114832 a(6) = 13 + ceiling(2*7*13/(7+13)) = 13 + ceiling(182/13) = 13 + 10 = 23.
%e A114832 a(7) = 23 + ceiling(2*13*23/(13+23)) = 23 + ceiling(598/36) = 23 + 17 = 40.
%e A114832 a(8) = 40 + ceiling(2*23*40/(23+40)) = 40 + ceiling(1840/63) = 40 + 30 = 70.
%e A114832 a(9) = 70 + ceiling(2*40*70/(40+70)) = 70 + ceiling(5600/110) = 70 + 51 = 121.
%e A114832 a(10) = 121 + ceiling(2*70*121/(70+121)) = 121 + ceiling(16940/191) = 121 + 89 = 210.
%e A114832 a(11) = 210 + ceiling(2*121*210/(121+210)) = 121 + ceiling(50820/331) = 210 + 154 = 364.
%e A114832 a(12) = 364 + ceiling(2*210*364/(210+364)) = 364 + ceiling(152880/574) = 364 + 267 = 631.
%p A114832 a[1]:=1: a[2]:=2: for n from 2 to 40 do a[n+1]:=a[n]+ceil((2*a[n]*a[n-1])/(a[n]+a[n-1])) od: seq(a[n],n=1..40); # _Emeric Deutsch_, Mar 03 2006
%Y A114832 Cf. A065094, A065095.
%K A114832 easy,nonn
%O A114832 1,2
%A A114832 _Jonathan Vos Post_, Feb 19 2006
%E A114832 More terms from _Emeric Deutsch_, Mar 03 2006