cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114833 Each term is previous term plus ceiling of root mean square of two previous terms.

This page as a plain text file.
%I A114833 #15 Feb 16 2025 08:33:00
%S A114833 0,1,2,4,8,15,28,51,93,168,304,550,995,1799,3253,5882,10635,19229,
%T A114833 34767,62861,113656,205497,371550,671782,1214618,2196094,3970654,
%U A114833 7179153,12980288,23469047,42433278,76721609,138716724,250807167,453472612,819902445,1482426947,2680306255,4846135343
%N A114833 Each term is previous term plus ceiling of root mean square of two previous terms.
%H A114833 Robert G. Wilson v, <a href="/A114833/b114833.txt">Table of n, a(n) for n = 0..1000</a>
%H A114833 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Root-Mean-Square.html">Root-Mean-Square.</a>
%H A114833 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Mean.html">Mean.</a>
%F A114833 a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + ceiling(RMS[a(n),a(n-1)]). a(n+1) = a(n) + ceiling[Sqrt[[a(n)^2]+[a(n-1)^2]/2]].
%F A114833 It can easily be proved via induction that a(n)<=2^n. On the other hand we can derive a lower bound: We derive another sequence of the form b(n) = a*c^n, where "a" and "c" are real numbers. If b(1)<=a(1) and b(2)<=a(2) and a(n+1) = a(n)+Ceiling(Sqrt((a(n)^2+a(n-1)^2)/2)) >= b(n)+Sqrt((b(n)^2+b(n-1)^2)/2) >= b(n+1) then, via induction we can safely conclude that a(n)>=b(n). With this method we can derive that a(n) >= 1.80805^(n-1) (where 1.80... is the positive solution of x^2 = x+Sqrt((x^2+1)/2)). Hence we have 1.80805 < a(n)^(1/n) < 2. Can these bounds be improved? - _Stefan Steinerberger_, Feb 21 2006
%e A114833 a(3) = 2 + ceiling[sqrt[(1^2 + 2^2)/2]] = 2 + ceiling[Sqrt[5/2]] = 2 + 2 = 4.
%e A114833 a(4) = 4 + ceiling[sqrt[(2^2 + 4^2)/2]] = 4 + ceiling[Sqrt[20/2]] = 4 + 4 = 8.
%e A114833 a(5) = 8 + ceiling[sqrt[(4^2 + 8^2)/2]] = 8 + ceiling[Sqrt[80/2]] = 8 + 7 = 15.
%e A114833 a(6) = 15 + ceiling[sqrt[(8^2 + 15^2)/2]] = 15 + ceiling[Sqrt[289/2]] = 15 + 13 = 28.
%e A114833 a(7) = 28 + ceiling[sqrt[(15^2 + 28^2)/2]] = 28 + ceiling[Sqrt[1009/2]] = 28 + 23 = 51.
%e A114833 a(8) = 51 + ceiling[sqrt[(28^2 + 51^2)/2]] = 51 + ceiling[Sqrt[3385/2]] = 51 + 42 = 93.
%e A114833 a(9) = 93 + ceiling[sqrt[(51^2 + 93^2)/2]] = 93 + ceiling[Sqrt[11250/2]] = 93 + 75 = 168 [the 75 is an exact value].
%e A114833 a(10) = 168 + ceiling[sqrt[(93^2 + 168^2)/2]] = 168 + ceiling[Sqrt[36873/2]] = 168 + 136 = 304.
%e A114833 a(11) = 304 + ceiling[sqrt[(168^2 + 304^2)/2]] = 304 + ceiling[Sqrt[120640/2]] = 304 + 246 = 550.
%e A114833 a(12) = 550 + ceiling[sqrt[(304^2 + 550^2)/2]] = 550 + ceiling[Sqrt[394916/2]] = 550 + 445 = 995.
%t A114833 a[n_] := a[n] = a[n - 1] + Ceiling[ Sqrt[(a[n - 1]^2 + a[n - 2]^2)/2]]; a[0] = 0; a[1] = 1; Array[a, 39, 0] (* _Robert G. Wilson v_, Jun 22 2014 *)
%t A114833 nxt[{a_,b_}]:={b,b+Ceiling[Sqrt[(a^2+b^2)/2]]}; Transpose[NestList[nxt,{0,1},40]][[1]] (* _Harvey P. Dale_, May 12 2015 *)
%Y A114833 Cf. A065094, A065095.
%K A114833 easy,nonn
%O A114833 0,3
%A A114833 _Jonathan Vos Post_, Feb 19 2006
%E A114833 a(0) and a(13) onward from _Robert G. Wilson v_, Jun 22 2014