This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114834 #9 Feb 16 2025 08:33:00 %S A114834 1,2,3,5,9,16,28,50,90,162,293,529,956,1728,3124,5648,10211,18462, %T A114834 33380,60352,109119,197293,356716,644961,1166123,2108412,3812120, %U A114834 6892514,12462029,22532007,40739059,73658371,133178227,240793271,435366958,787166465 %N A114834 Each term is previous term plus floor of root mean square of two previous terms. %C A114834 What is this sequence and the ratio of adjacent terms, asymptotically? Primes in this sequence include 2, 3, 5, 293. Squares in this sequence include 9, 16, 529. %H A114834 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Root-Mean-Square.html">Root-Mean-Square.</a> %H A114834 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Mean.html">Mean.</a> %F A114834 a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(RMS[a(n),a(n-1)]). a(n+1) = a(n) + floor[Sqrt[[a(n)^2]+[a(n-1)^2]/2]]. %e A114834 a(3) = 2 + floor[sqrt[(1^2 + 2^2)/2]] = 2 + floor[Sqrt[5/2]] = 2 + 1 = 3. %e A114834 a(4) = 3 + floor[sqrt[(2^2 + 3^2)/2]] = 4 + floor[Sqrt[13/2]] = 3 + 2 = 5. %e A114834 a(5) = 5 + floor[sqrt[(3^2 + 5^2)/2]] = 8 + floor[Sqrt[34/2]] = 5 + 4 = 9. %e A114834 a(6) = 9 + floor[sqrt[(5^2 + 9^2)/2]] = 15 + floor[Sqrt[106/2]] = 9 + 7 = 16. %e A114834 a(7) = 16 + floor[sqrt[(9^2 + 16^2)/2]] = 15 + floor[Sqrt[337/2]] = 16 + 12 = 28. %e A114834 a(8) = 28 + floor[sqrt[(16^2 + 28^2)/2]] = 15 + floor[Sqrt[1040/2]] = 28 + 22 = 50. %e A114834 a(9) = 50 + floor[sqrt[(28^2 + 50^2)/2]] = 50 + floor[Sqrt[3284/2]] = 50 + 40 = 90. %e A114834 a(10) = 90 + floor[sqrt[(50^2 + 90^2)/2]] = 50 + floor[Sqrt[10600/2]] = 90 + 72 = 162. %e A114834 a(11) = 162 + floor[sqrt[(90^2 + 162^2)/2]] = 50 + floor[Sqrt[34344/2]] = 162 + 131 = 293. %e A114834 a(12) = 293 + floor[sqrt[(162^2 + 293^2)/2]] = 293 + floor[Sqrt[112093/2]] = 293 + 236 = 529. %p A114834 rms := proc(a,b) %p A114834 sqrt((a^2+b^2)/2) ; %p A114834 end proc: %p A114834 A114834 := proc(n) %p A114834 option remember; %p A114834 if n<= 2 then %p A114834 n; %p A114834 else %p A114834 procname(n-1)+floor(rms(procname(n-1),procname(n-2))) ; %p A114834 end if; %p A114834 end proc: # _R. J. Mathar_, Jun 23 2014 %Y A114834 Cf. A065094, A065095. %K A114834 easy,nonn %O A114834 1,2 %A A114834 _Jonathan Vos Post_, Feb 19 2006