cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114834 Each term is previous term plus floor of root mean square of two previous terms.

This page as a plain text file.
%I A114834 #9 Feb 16 2025 08:33:00
%S A114834 1,2,3,5,9,16,28,50,90,162,293,529,956,1728,3124,5648,10211,18462,
%T A114834 33380,60352,109119,197293,356716,644961,1166123,2108412,3812120,
%U A114834 6892514,12462029,22532007,40739059,73658371,133178227,240793271,435366958,787166465
%N A114834 Each term is previous term plus floor of root mean square of two previous terms.
%C A114834 What is this sequence and the ratio of adjacent terms, asymptotically? Primes in this sequence include 2, 3, 5, 293. Squares in this sequence include 9, 16, 529.
%H A114834 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Root-Mean-Square.html">Root-Mean-Square.</a>
%H A114834 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Mean.html">Mean.</a>
%F A114834 a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(RMS[a(n),a(n-1)]). a(n+1) = a(n) + floor[Sqrt[[a(n)^2]+[a(n-1)^2]/2]].
%e A114834 a(3) = 2 + floor[sqrt[(1^2 + 2^2)/2]] = 2 + floor[Sqrt[5/2]] = 2 + 1 = 3.
%e A114834 a(4) = 3 + floor[sqrt[(2^2 + 3^2)/2]] = 4 + floor[Sqrt[13/2]] = 3 + 2 = 5.
%e A114834 a(5) = 5 + floor[sqrt[(3^2 + 5^2)/2]] = 8 + floor[Sqrt[34/2]] = 5 + 4 = 9.
%e A114834 a(6) = 9 + floor[sqrt[(5^2 + 9^2)/2]] = 15 + floor[Sqrt[106/2]] = 9 + 7 = 16.
%e A114834 a(7) = 16 + floor[sqrt[(9^2 + 16^2)/2]] = 15 + floor[Sqrt[337/2]] = 16 + 12 = 28.
%e A114834 a(8) = 28 + floor[sqrt[(16^2 + 28^2)/2]] = 15 + floor[Sqrt[1040/2]] = 28 + 22 = 50.
%e A114834 a(9) = 50 + floor[sqrt[(28^2 + 50^2)/2]] = 50 + floor[Sqrt[3284/2]] = 50 + 40 = 90.
%e A114834 a(10) = 90 + floor[sqrt[(50^2 + 90^2)/2]] = 50 + floor[Sqrt[10600/2]] = 90 + 72 = 162.
%e A114834 a(11) = 162 + floor[sqrt[(90^2 + 162^2)/2]] = 50 + floor[Sqrt[34344/2]] = 162 + 131 = 293.
%e A114834 a(12) = 293 + floor[sqrt[(162^2 + 293^2)/2]] = 293 + floor[Sqrt[112093/2]] = 293 + 236 = 529.
%p A114834 rms := proc(a,b)
%p A114834     sqrt((a^2+b^2)/2) ;
%p A114834 end proc:
%p A114834 A114834 := proc(n)
%p A114834     option remember;
%p A114834     if n<= 2 then
%p A114834         n;
%p A114834     else
%p A114834         procname(n-1)+floor(rms(procname(n-1),procname(n-2))) ;
%p A114834     end if;
%p A114834 end proc: # _R. J. Mathar_, Jun 23 2014
%Y A114834 Cf. A065094, A065095.
%K A114834 easy,nonn
%O A114834 1,2
%A A114834 _Jonathan Vos Post_, Feb 19 2006