This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114874 #16 Apr 19 2019 11:25:32 %S A114874 2,4,6,16,18,42,100,156,162,256,486,1458,2028,4422,6162,14406,19182, %T A114874 22650,23548,26406,37056,39366,62500,65536,77658,113232,121452,143262, %U A114874 208392,292140,342732,375156,412806,527802,564898,590592,697048,843642 %N A114874 Numbers representable in exactly two ways as (p-1)*p^e (where p is a prime and e >= 0) in ascending order. %C A114874 Numbers that are one less than a prime number and of the form (p-1)*p^e for some prime p and e > 0. - _Jianing Song_, Apr 13 2019 %H A114874 Jianing Song, <a href="/A114874/b114874.txt">Table of n, a(n) for n = 1..162</a> (all terms below 10^8) %e A114874 6 is a member because 6 = (3-1)*3^1 = (7-1)*7^0 and 3 and 7 are primes. %t A114874 s = Split@Sort@Flatten@Table[(Prime[n] - 1)Prime[n]^k, {n, 68000}, {k, 0, 16}]; Union@Flatten@Select[s, Length@# == 2 &] (* _Robert G. Wilson v_, Jan 05 2006 *) %o A114874 (PARI) isA114874(n) = if(n>1, my(v=factor(n), d=#v[, 1], p=v[d,1], e=v[d,2]); (isprime(n+1) && n==(p-1)*p^e), 0) \\ _Jianing Song_, Apr 13 2019 %Y A114874 Cf. A114871, A114873. %K A114874 nonn %O A114874 1,1 %A A114874 _Franz Vrabec_, Jan 03 2006 %E A114874 a(13)-a(38) from _Robert G. Wilson v_, Jan 05 2006