cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114889 a(1)=1 and, for n>1, a(n) is the smallest integer greater than a(n-1) such that a(n)+a(i) is not a power of 3, for i=1,..., n-1.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 11, 12, 13, 19, 21, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 55, 57, 58, 61, 63, 64, 65, 66, 67, 73, 75, 76, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108
Offset: 1

Views

Author

John W. Layman, Jan 04 2006

Keywords

Comments

The differences of {a(n)}, together with a conjectured formula for them, is given in A114890.

Examples

			Given that a(1)=1, a(2)=3 and a(3)=4, we find that a(4)>5 since 5+4=9 and a(4)>6 since 6+3=9. But none of 7+1, 7+3, or 7+4 is a power of 3, so a(4)=7.
		

Crossrefs

A119350 First differences of A118374.

Original entry on oeis.org

1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 18, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

John W. Layman, May 23 2006

Keywords

Crossrefs

Formula

Conjecture. Define g(1)=1 and, for i>1, g(i)=2*g(i-1)+2^(i-2). Also define h(1)=1, h(2)=4 and, for i>2, h(i)=h(i-1)+2^(i-2). Then a(n)=h(i) if n=g(i), a(n)=1 if g(i)-2^(i-2)<=n

A138684 First differences of A138683.

Original entry on oeis.org

1, 3, 1, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 3, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 3, 1, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 3, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 3, 1, 1, 4, 1, 3, 1, 1, 1, 1, 6, 1, 3, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 3, 1, 1, 4, 1
Offset: 1

Author

John W. Layman, Mar 26 2008

Keywords

Comments

The graph of this sequence is fractal-like.
Conjecture. Let x(1)=1, x(2)=2, x(n) = 2*x(n-1) + x(n-2), and let y(1)=1, y(2)=3, y(n) = y(n-1) + y(n-2). Then if n=x(k), a(n)=y(k); if x(k) < n < 2*x(k), a(n) = a(n-x(k)); and if 2*x(k) <= n < x(k+1), a(n)=1. (This has been confirmed for n < 500.) - John W. Layman, Nov 26 2011

Crossrefs

Showing 1-3 of 3 results.