This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114921 #71 Apr 08 2025 13:21:22 %S A114921 1,0,1,2,4,6,11,16,27,40,63,92,141,202,299,426,614,862,1222,1694,2362, %T A114921 3242,4456,6054,8229,11072,14891,19872,26477,35050,46320,60866,79827, %U A114921 104194,135703,176008,227791,293702,377874,484554,620011,790952,1006924 %N A114921 Number of unimodal compositions of n+2 where the maximal part appears exactly twice. %C A114921 Old name was: Expansion of a q-series. %C A114921 a(n) is also the number of 2-colored partitions of n with the same number of parts in each color. - _Shishuo Fu_, May 30 2017 %C A114921 From _Gus Wiseman_, Mar 25 2021: (Start) %C A114921 Also the number of even-length compositions of n with alternating parts weakly decreasing. Allowing odd lengths also gives A342528. The version with alternating parts strictly decreasing appears to be A064428. The a(2) = 1 through a(7) = 16 compositions are: %C A114921 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) %C A114921 (2,1) (2,2) (2,3) (2,4) (2,5) %C A114921 (3,1) (3,2) (3,3) (3,4) %C A114921 (1,1,1,1) (4,1) (4,2) (4,3) %C A114921 (1,2,1,1) (5,1) (5,2) %C A114921 (2,1,1,1) (1,2,1,2) (6,1) %C A114921 (1,3,1,1) (1,3,1,2) %C A114921 (2,1,2,1) (1,4,1,1) %C A114921 (2,2,1,1) (2,2,1,2) %C A114921 (3,1,1,1) (2,2,2,1) %C A114921 (1,1,1,1,1,1) (2,3,1,1) %C A114921 (3,1,2,1) %C A114921 (3,2,1,1) %C A114921 (4,1,1,1) %C A114921 (1,2,1,1,1,1) %C A114921 (2,1,1,1,1,1) %C A114921 (End) %H A114921 Alois P. Heinz, <a href="/A114921/b114921.txt">Table of n, a(n) for n = 0..10000</a> %H A114921 S. Fu and D. Tang, <a href="https://arxiv.org/abs/1705.10067">On a generalized crank for k-colored partitions</a>, arXiv:1705.10067 [math.CO], 2017. %H A114921 B. Kim and J. Lovejoy, <a href="https://doi.org/10.1007/s00026-015-0281-x">Ramanujan-type partial theta identities and rank differences for special unimodal sequences</a>, Annals of Combinatorics, 19 (2015), 705-733. %F A114921 G.f.: 1 + Sum_{k>0} (x^k / ((1-x)(1-x^2)...(1-x^k)))^2 = (1 + Sum_{k>0} 2 (-1)^k x^((k^2+k)/2) ) / (Product_{k>0} (1 - x^k))^2. %F A114921 G.f.: 1 + x*(1 - G(0))/(1-x) where G(k) = 1 - x/(1-x^(k+1))^2/(1-x/(x-1/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 23 2013 %F A114921 a(n) = A006330(n) - A001523(n). - _Vaclav Kotesovec_, Jun 22 2015 %F A114921 a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (16 * 3^(5/4) * n^(7/4)). - _Vaclav Kotesovec_, Oct 24 2018 %e A114921 From _Joerg Arndt_, Jun 10 2013: (Start) %e A114921 There are a(7)=16 such compositions of 7+2=9 where the maximal part appears twice: %e A114921 01: [ 1 1 1 1 1 2 2 ] %e A114921 02: [ 1 1 1 1 2 2 1 ] %e A114921 03: [ 1 1 1 2 2 1 1 ] %e A114921 04: [ 1 1 1 3 3 ] %e A114921 05: [ 1 1 2 2 1 1 1 ] %e A114921 06: [ 1 1 3 3 1 ] %e A114921 07: [ 1 2 2 1 1 1 1 ] %e A114921 08: [ 1 2 3 3 ] %e A114921 09: [ 1 3 3 1 1 ] %e A114921 10: [ 1 3 3 2 ] %e A114921 11: [ 1 4 4 ] %e A114921 12: [ 2 2 1 1 1 1 1 ] %e A114921 13: [ 2 3 3 1 ] %e A114921 14: [ 3 3 1 1 1 ] %e A114921 15: [ 3 3 2 1 ] %e A114921 16: [ 4 4 1 ] %e A114921 (End) %t A114921 max = 50; s = (1+Sum[2*(-1)^k*q^(k(k+1)/2), {k, 1, max}])/QPochhammer[q]^2+ O[q]^max; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 30 2015, from 1st g.f. *) %t A114921 wdw[q_]:=And@@Table[q[[i]]>=q[[i+2]],{i,Length[q]-2}]; %t A114921 Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],EvenQ[Length[#]]&],wdw]],{n,0,15}] (* _Gus Wiseman_, Mar 25 2021 *) %o A114921 (PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, n\2, x^(2*k) / prod(i=1, k, 1 - x^i, 1 + x * O(x^n))^2), n))}; %o A114921 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=1, sqrtint(8*n + 1)\2, 2*(-1)^k * x^((k^2+k)/2), 1 + A) / eta(x + A)^2, n))}; %Y A114921 Cf. A226541 (max part appears three times), A188674 (max part m appears m times), A001523 (max part appears any number of times). %Y A114921 Column k=2 of A247255. %Y A114921 A000041 counts weakly increasing (or weakly decreasing) compositions. %Y A114921 A000203 adds up divisors. %Y A114921 A002843 counts compositions with all adjacent parts x <= 2y. %Y A114921 A003242 counts anti-run compositions. %Y A114921 A034008 counts even-length compositions. %Y A114921 A065608 counts even-length compositions with alternating parts equal. %Y A114921 A342528 counts compositions with alternating parts weakly decreasing. %Y A114921 A342532 counts even-length compositions with alternating parts unequal. %Y A114921 Cf. A000726, A001522, A008965, A062968, A064410, A064428, A069916, A070211, A175342, A224958, A342495, A342527. %K A114921 nonn %O A114921 0,4 %A A114921 _Michael Somos_, Jan 07 2006 %E A114921 New name from _Joerg Arndt_, Jun 10 2013