This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114932 #11 Dec 17 2022 08:25:26 %S A114932 0,0,1,25,267,2265,17471,128765,927067,6591505,46545591,327428805, %T A114932 2298406067,16114352345,112902172111,790721005645,5536667136267, %U A114932 38763140938785,271367842141031,1899678231827285,13298160713181667 %N A114932 Number of connected (3,n)-hypergraphs (without empty edges and without multiple edges). %H A114932 G. C. Greubel, <a href="/A114932/b114932.txt">Table of n, a(n) for n = 0..1000</a> %H A114932 Goran Kilibarda and Vladeta Jovovic, <a href="https://arxiv.org/abs/1411.4187">Enumeration of some classes of T_0-hypergraphs</a>, arXiv:1411.4187 [math.CO], 2014. %F A114932 E.g.f.: (1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2). %t A114932 With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] - Exp[3*x] + 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* _G. C. Greubel_, Oct 07 2017 *) %o A114932 (PARI) x='x+O('x^50); concat([0,0], Vec(serlaplace((1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2)))) \\ _G. C. Greubel_, Oct 07 2017 %Y A114932 Cf. A002501, A002502, A093732, A093733. %Y A114932 Cf. A114933, A114934, A114935, A114936, A114937. %K A114932 easy,nonn %O A114932 0,4 %A A114932 Goran Kilibarda and _Vladeta Jovovic_, Jan 08 2006