This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114939 #35 Dec 03 2018 05:05:32 %S A114939 0,1,7,216,10956,803400,83003040,11579823360,2080493573760, %T A114939 469031859192960,129727461014726400,43176116371928601600, %U A114939 17025803126147196057600,7850538273249476117913600 %N A114939 Number of essentially different seating arrangements for n couples around a circular table with 2n seats avoiding spouses being neighbors and avoiding clusters of 3 persons with equal gender. %C A114939 Arrangements that differ only by rotation or reflection are excluded by the following conditions: Seat number 1 is assigned to person (a). Person (a)'s spouse (A) can only take seats with numbers <=(n+1). If (A) gets seat n+1 (i.e. sits exactly opposite to her/his spouse) then person (B) can only take seats with numbers <= n. %H A114939 M. A. Alekseyev, Weighted de Bruijn Graphs for the Menage Problem and Its Generalizations. Lecture Notes in Computer Science 9843 (2016), 151-162. doi:<a href="http://doi.org/10.1007/978-3-319-44543-4_12">10.1007/978-3-319-44543-4_12</a>; arXiv:<a href="http://arxiv.org/abs/1510.07926">1510.07926</a> [math.CO], 2015-2016. %F A114939 See Alekseyev (2016) and the PARI code for the formula. %F A114939 a(n) = A258338(n) / (4*n). %e A114939 a(2)=1 because the only valid arrangement is aBAb. %e A114939 a(3)=7 because the only valid arrangements under the given conditions are: abAcBC, aBAcbC, aBcAbC, aBcACb, acAbCB, acBAbC, aCAbcB. %t A114939 a[1] = 0; %t A114939 a[n_] := (n-1)!/4 Sum[(-1)^j(n-j)! SeriesCoefficient[ SeriesCoefficient[Tr[ MatrixPower[{{0, 1, 0, y^2, 0, 0}, {z y^2, 0, 1, 0, y^2, 0}, {z y^2, 0, 0, 0, y^2, 0}, {0, 1, 0, 0, 0, z}, {0, 1, 0, y^2, 0, z}, {0, 0, 1, 0, y^2, 0}}, 2n]], {y, 0, 2n}] , {z, 0, j}], {j, 0, n}]; %t A114939 Array[a, 14] (* _Jean-François Alcover_, Dec 03 2018, from PARI *) %o A114939 (PARI) { a(n) = if(n<=1, 0, (-1)^n*(n-1)!*2^(n-1) + n! * polcoeff( polcoeff( [0, 2*y*z^3 + z^2, -3*y*z^5 - 4*z^4 + ((-2*y^2 - 1)/y)*z^3, 6*y*z^7 + (4*y^2 + 11)*z^6 + ((8*y^2 + 4)/y)*z^5 + 3*z^4] * sum(j=0,n-1, j! * [0, 0, 0, -z^6 + z^4; 1, 0, 0, ((y^2 + 1)/y)*z^5 - 2*z^4 + ((-y^2 - 1)/y)*z^3; 0, 1, 0, ((2*y^2 + 2)/y)*z^3 + z^2; 0, 0, 1, -2*z^2]^(n+j) ) * [1,0,0,0]~, 2*n,z), 0,y) / 2 ); } %Y A114939 Cf. A114938, A137729, A137730, A137737, A137749, A258338. %K A114939 nonn,nice %O A114939 1,3 %A A114939 _Hugo Pfoertner_, Jan 08 2006 %E A114939 a(4)-a(7) corrected, formula and further term provided by _Max Alekseyev_, Feb 15 2008