cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114956 a(n) = ceiling(a(n-1)^(3/4) + a(n-2)^(3/4)), with a(0) = a(1) = 1.

This page as a plain text file.
%I A114956 #20 Sep 10 2024 08:45:07
%S A114956 1,1,2,3,4,6,7,9,10,11,12,13,14,15,15,16,16,16,16,16,16,16,16,16,16,
%T A114956 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
%U A114956 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16
%N A114956 a(n) = ceiling(a(n-1)^(3/4) + a(n-2)^(3/4)), with a(0) = a(1) = 1.
%C A114956 a(17) = 16 is exactly 16^(3/4) + 16^(3/4) = 16. This is a fixed point, so a(n) = 16 for all n>14.
%e A114956 a(2) = ceiling(a(0)^(3/4) + a(1)^(3/4)) = ceiling(1^(3/4) + 1^(3/4)) = 2.
%e A114956 a(3) = ceiling(a(1)^(3/4) + a(2)^(3/4)) = ceiling(1^(3/4) + 2^(3/4)) = ceiling(2.68179283) = 3.
%e A114956 a(4) = ceiling(2^(3/4) + 3^(3/4)) = ceiling(3.96129989) = 4.
%e A114956 a(5) = ceiling(3^(3/4) + 4^(3/4)) = ceiling(5.10793418) = 6.
%e A114956 a(6) = ceiling(4^(3/4) + 6^(3/4)) = ceiling(6.66208575) = 7.
%t A114956 RecurrenceTable[{a[0]==1,a[1]==1,a[n]==Ceiling[a[n-1]^(3/4)+ a[n-2]^(3/4)]}, a[n],{n,80}] (* _Harvey P. Dale_, Jul 22 2011 *)
%Y A114956 Cf. A000283, A112961, A112969, A114793.
%K A114956 easy,nonn
%O A114956 0,3
%A A114956 _Jonathan Vos Post_, Feb 21 2006
%E A114956 Edited by _N. J. A. Sloane_, May 20 2006