cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114963 a(n) = n^2 + 22.

This page as a plain text file.
%I A114963 #39 Nov 29 2024 19:32:59
%S A114963 22,23,26,31,38,47,58,71,86,103,122,143,166,191,218,247,278,311,346,
%T A114963 383,422,463,506,551,598,647,698,751,806,863,922,983,1046,1111,1178,
%U A114963 1247,1318,1391,1466,1543,1622,1703,1786,1871,1958,2047,2138,2231,2326,2423,2522,2623
%N A114963 a(n) = n^2 + 22.
%C A114963 Old name was: "Numbers of the form x^2 + 22".
%C A114963 x^2 + 22 != y^n for all x,y and n > 1.
%H A114963 Vincenzo Librandi, <a href="/A114963/b114963.txt">Table of n, a(n) for n = 0..1000</a>
%H A114963 J. H. E. Cohn, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa65/aa6546.pdf">The diophantine equation x^2 + C = y^n</a>, Acta Arithmetica LXV.4 (1993).
%H A114963 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A114963 G.f.: (22 - 43*x + 23*x^2)/(1 - x)^3. - _Vincenzo Librandi_, Apr 30 2014
%F A114963 From _Amiram Eldar_, Nov 04 2020: (Start)
%F A114963 Sum_{n>=0} 1/a(n) = (1 + sqrt(22)*Pi*coth(sqrt(22)*Pi))/44.
%F A114963 Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(22)*Pi*cosech(sqrt(22)*Pi))/44. (End)
%F A114963 From _Elmo R. Oliveira_, Nov 29 2024: (Start)
%F A114963 E.g.f.: exp(x)*(22 + x + x^2).
%F A114963 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
%t A114963 Table[n^2 + 22, {n, 0, 60}] (* _Vincenzo Librandi_, Apr 30 2014 *)
%o A114963 (PARI) a(n)=n^2+22 \\ _Amiram Eldar_, Nov 04 2020
%o A114963 (Magma) [n^2+22: n in [0..60]]; // _Vincenzo Librandi_, Apr 30 2014
%Y A114963 Cf. similar sequences listed in A114962.
%K A114963 nonn,easy
%O A114963 0,1
%A A114963 _Cino Hilliard_, Feb 21 2006
%E A114963 a(0)=22 from _Vincenzo Librandi_, Apr 30 2014
%E A114963 Definition changed by _Bruno Berselli_, Mar 13 2015
%E A114963 Offset corrected by _Amiram Eldar_, Nov 04 2020