This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114968 #8 Jun 15 2016 09:19:28 %S A114968 1,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,3,4,6,4,4,5,7,10,15,11,12,14,18,26, %T A114968 37,28,29,35,46,64,94,71,74,89,117,163,238,180,188,226,297,416,608, %U A114968 461,481,580,763,1067,1563,1187,1240,1496,1969,2755,4038,3070 %N A114968 a(n) = floor(n^(n/6)/n!!!!!!). %C A114968 This sequence is an approximation of a sextuple factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 6, 8, 9, 12. %F A114968 a(n) = floor(n^(n/6)/n!!!!!!). a(n) = floor(n^(n/6)/n!6). a(n) = floor((A000312(n)^(1/6))/A085158(n)). %e A114968 a(12) = floor(12^2/12!!!!!) = floor(12^2/72) = floor(2) = 2. %e A114968 a(18) = floor(18^3/18!!!!!) = floor((18^3)/1296) = floor(4.5) = 4. %e A114968 a(24) = floor(24^4/20!!!!!) = floor((24^4)/31104) = floor(10.6666667) = 10. %e A114968 a(30) = floor(30^5/25!!!!!) = floor((30^5)/933120) = floor(26.0416667) = 26. %e A114968 a(36) = floor(36^6/30!!!!!) = floor((36^6)/33592320) = floor(64.8) = 64. %t A114968 fac[n_, m_] := Block[{t = n, f = Max[1, n]}, While[t > m, t -= m; f *= t]; f]; a[n_] := Floor[n^(n/6)/fac[n, 6]]; Array[a, 65] (* _Giovanni Resta_, Jun 15 2016 *) %Y A114968 Cf. A000312, A006882, A055775, A085157, A085158. %K A114968 easy,nonn %O A114968 1,12 %A A114968 _Jonathan Vos Post_, Feb 22 2006 %E A114968 Corrected and extended by _Giovanni Resta_, Jun 15 2016