This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A114976 #20 Apr 25 2023 13:21:59 %S A114976 1,2,2,5,2,14,2,30,11,80,2,280,2,764,128,2557,2,9036,2,29656,1958, %T A114976 103134,2,373454,119,1300824,36992,4681568,2,17119030,2,61799636, %U A114976 758982,226451040,2180,837469677,2,3084255132,16391220,11451833394,2,42746493556,2 %N A114976 Number of subsets of {1,2,....,n} with an arithmetic mean that is an integer and also a divisor of n. %C A114976 a(n) <= A051293(n); %C A114976 a(n) = 2 iff n is prime, just as for the number of divisors of n and also, at least for the very first terms, a(n)=odd iff n is a square: these observations might suggest conjectures on a deeper relationship with A000005. %H A114976 Alois P. Heinz, <a href="/A114976/b114976.txt">Table of n, a(n) for n = 1..100</a> %e A114976 a(9) = 11: {1}, {3}, {9}, {1,5}, {2,4}, {1,2,6}, {1,3,5}, {2,3,4}, {1,2,3,6}, {1,2,4,5} and {1,2,3,4,5}, e.g. also {1,4,7} has an integral arithmetic mean, but (1+4+7)/3 = 4 is not a divisor of 9. %p A114976 b:= proc(n, m, s, c) option remember; `if`(n=0, %p A114976 `if`(c>0 and denom(s)=1 and irem(m, s)=0, 1, 0), %p A114976 b(n-1, m, s, c)+b(n-1, m, (s*c+n)/(c+1), c+1)) %p A114976 end: %p A114976 a:= proc(n) option remember; forget (b); b(n$2, 0$2) end: %p A114976 seq(a(n), n=1..50); # _Alois P. Heinz_, Jul 15 2019 %t A114976 b[n_, m_, s_, c_] := b[n, m, s, c] = If[n==0, If[c>0 && Denominator[s]==1 && Mod[m, s]==0, 1, 0], b[n-1, m, s, c]+b[n-1, m, (s c + n)/(c+1), c+1]]; %t A114976 a[n_] := b[n, n, 0, 0]; %t A114976 Array[a, 50] (* _Jean-François Alcover_, Nov 04 2020, after _Alois P. Heinz_ *) %Y A114976 Cf. A000005, A051293. %K A114976 nonn %O A114976 1,2 %A A114976 _Reinhard Zumkeller_, Feb 22 2006 %E A114976 a(27)-a(38) from _Donovan Johnson_, Jun 10 2010 %E A114976 a(39)-a(43) from _Alois P. Heinz_, Jul 15 2019