cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A380098 Numbers whose sum of cubes of distinct prime factors is prime.

Original entry on oeis.org

165, 210, 390, 399, 420, 462, 495, 561, 570, 595, 615, 630, 651, 780, 798, 825, 840, 924, 957, 1050, 1085, 1140, 1170, 1173, 1197, 1218, 1235, 1245, 1260, 1302, 1386, 1435, 1470, 1482, 1485, 1495, 1554, 1560, 1596, 1615, 1680, 1683, 1705, 1710, 1767, 1771, 1815, 1845, 1848, 1885, 1890, 1938, 1950, 1953
Offset: 1

Views

Author

Rafik Khalfi, Jan 12 2025

Keywords

Examples

			165=3*5*11 and 3^3 + 5^3 + 11^3 = 1483, which is prime. Therefore, 165 is included.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local DPF: DPF:=factorset(n): if isprime(sum(DPF[j]^3, j=1..nops(DPF)))=true then n else fi end: seq(a(n), n=1..2000);
  • Mathematica
    Select[Range[2000], PrimeQ[Total[Transpose[FactorInteger[#]][[1]]^3]]&]
  • Python
    from sympy import isprime, factorint
    def ok(n): return isprime(sum(p**3 for p in factorint(n)))
    print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Jan 12 2025
Showing 1-1 of 1 results.