cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114997 Number of ordered trees with n edges and no unary or binary nodes.

This page as a plain text file.
%I A114997 #53 Jan 22 2025 05:20:58
%S A114997 0,0,1,1,1,4,8,13,31,71,144,318,729,1611,3604,8249,18803,42907,98858,
%T A114997 228474,528735,1228800,2865180,6693712,15676941,36807239,86584783,
%U A114997 204060509,481823778,1139565120,2699329341,6403500057,15211830451,36183117255,86171536894,205459894230,490417795075
%N A114997 Number of ordered trees with n edges and no unary or binary nodes.
%C A114997 Also counts sequences of n natural numbers, excluding 1 and 2, such that the sum of every prefix is no more than its length.
%C A114997 a(n) is the number of Dyck paths of semilength n with all ascents of length >= 3. For example, a(6) = 4 counts U^6.D^6, U^3.D.U^3.D^5, U^3.D^2.U^3.D^4, U^3.D^3.U^3.D^3 where ^ denotes repetition and a dot denotes concatenation. - _David Callan_, Dec 08 2021
%H A114997 Vincenzo Librandi, <a href="/A114997/b114997.txt">Table of n, a(n) for n = 1..1000</a>
%H A114997 Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/patterns2019.pdf">Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata</a>, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
%H A114997 Nachum Dershowitz and Shmuel Zaks, <a href="http://www.cs.tau.ac.il/~nachumd/papers/UpDown.pdf">More patterns in trees: Up and down, young and old, odd and even</a>, SIAM J. Discrete Mathematics, 23 (2009), 447-465.
%F A114997 a(n) = Sum_{(n+3)/2 <= k <= n} (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)).
%F A114997 If A(x) is the g.f. for the sequence with a(0)=1, then x^3*A^3+x*A^2-(1 + x)*A+1 = 0. - _Emeric Deutsch_, Jan 13 2015
%F A114997 Let A(x) be the g.f. for the sequence with a(0)=1, then x*A(x) is the reversion of x/(1+x^2*sum(k>=1,x^k)). - _Joerg Arndt_, Aug 19 2012 (proved by _Emeric Deutsch_, Jan 13 2015)
%F A114997 Recurrence: (n+1)*(n+2)*(28*n^2 - 38*n - 15)*a(n) = -4*(n+1)*(14*n^3 - 12*n^2 + 7*n - 15)*a(n-1) + (n-2)*(140*n^3 + 90*n^2 - 221*n + 45)*a(n-2) + 6*(n-2)*(28*n^3 - 24*n^2 - 75*n + 95)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 18*n - 25)*a(n-4). - _Vaclav Kotesovec_, Mar 22 2014
%F A114997 a(n) ~ c / (n^(3/2) * r^n), where r = (4*sqrt(2) - 3 + 23*sqrt((344*sqrt(2))/529 - 235/529))/46 = 0.402505948621022106992... is the root of the equation 23*r^4+6*r^3+5*r^2-2*r-1 = 0 and c = sqrt((280 + 133*sqrt(2) - 25*sqrt(14*(11 + 8*sqrt(2)))) / (7*Pi))/4 = 0.273007516... - _Vaclav Kotesovec_, Mar 22 2014, updated Jan 14 2015
%p A114997 eq := x^3*A^3+x*A^2-(1+x)*A+1 = 0: A := RootOf(eq, A): Aser := series(A, x = 0, 40): seq(coeff(Aser, x, n), n = 1 .. 38); # _Emeric Deutsch_, Jan 13 2015
%t A114997 Table[Sum[1/(n+1)*Binomial[n+1,k]*Binomial[2*k-n-3,n-k],{k,Ceiling[(n+3)/2],n}],{n,1,20}] (* _Vaclav Kotesovec_, Mar 22 2014 *)
%o A114997 (PARI) a(n)=sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ _Joerg Arndt_, Aug 19 2012
%o A114997 (PARI) N=66; gf=serreverse(x/(1+x^2*sum(k=1,N,x^k))+O(x^N)) / x;
%o A114997 /* = 1 + x^3 + x^4 + x^5 + 4*x^6 + 8*x^7 + 13*x^8 + 31*x^9 + ... */
%o A114997 v114997=Vec(gf) /* = [1, 0, 0, 1, 1, 1, 4, 8, 13, 31, ...] */  \\ _Joerg Arndt_, Aug 19 2012
%Y A114997 Cf. A000108 (rev. of x/(1+1*Sum_{k>=1} x^k) ), A005043 (rev. of x/(1+x*Sum_{k>=1} x^k) ), A215341 (rev. of x/(1+x^3*Sum_{k>=1} x^k) ).
%K A114997 nonn
%O A114997 1,6
%A A114997 _Nachum Dershowitz_, Feb 23 2006
%E A114997 Offset set to 1 by _Joerg Arndt_, Aug 19 2012