cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115032 Expansion of (5-14*x+x^2)/((1-x)*(x^2-18*x+1)).

This page as a plain text file.
%I A115032 #73 Mar 16 2024 02:37:56
%S A115032 5,81,1445,25921,465125,8346321,149768645,2687489281,48225038405,
%T A115032 865363202001,15528312597605,278644263554881,5000068431390245,
%U A115032 89722587501469521,1610006506595061125,28890394531209630721,518417095055178291845,9302617316461999622481
%N A115032 Expansion of (5-14*x+x^2)/((1-x)*(x^2-18*x+1)).
%C A115032 Relates squares of numerators and denominators of continued fraction convergents to sqrt(5).
%C A115032 Sequence is generated by the floretion A*B*C with A = + 'i - 'k + i' - k' - 'jj' - 'ij' - 'ji' - 'jk' - 'kj' ; B = - 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj' ; C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' (apart from a factor (-1)^n)
%C A115032 Floretion Algebra Multiplication Program, FAMP Code: tesseq[A*B*C].
%C A115032 The sequence a(n-1), n >= 0, with a(-1) = 1, is also the curvature of circles inscribed in a special way in the larger segment of a circle of radius 5/4 (in some units) cut by a chord of length 2. For the smaller segment, the analogous curvature sequence is given in A240926. For more details see comments on A240926. See also the illustration in the present sequence, and the proof of the coincidence of the curvatures with a(n-1) in part I of the W. Lang link. - _Kival Ngaokrajang_, Aug 23 2014
%H A115032 G. C. Greubel, <a href="/A115032/b115032.txt">Table of n, a(n) for n = 0..795</a>
%H A115032 Creighton Dement, <a href="https://github.com/Floretion-Inquisitor/floretions/blob/main/examples/A115032/A115032.floretions.pdf">Floretions associated with A115032</a>.
%H A115032 Wolfdieter Lang, <a href="/A115032/a115032_5.pdf">A proof for the touching circle problem (part I)</a>.
%H A115032 Giovanni Lucca, <a href="https://ijgeometry.com/product/giovanni-lucca-circle-chains-inside-the-arbelos-and-integer-sequences/">Circle chains inside the arbelos and integer sequences</a>, Int'l J. Geom. (2023) Vol. 12, No. 1, 71-82.
%H A115032 Kival Ngaokrajang, <a href="/A115032/a115032_2.pdf">Illustration of initial terms</a>.
%H A115032 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (19,-19,1).
%H A115032 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.
%F A115032 sqrt(a(2*n)) = sqrt(5)*A007805(n) = sqrt(5)*Fibonacci(6*n+3)/2 = sqrt(5)*A001076(2*n+1); sqrt(a(2*n+1)) = A023039(2*n+1) = A001077(2*n).
%F A115032 From _Wolfdieter Lang_, Aug 22 2014: (Start)
%F A115032 O.g.f.: (5-14*x+x^2)/((1-x)*(x^2-18*x+1)) (see the name).
%F A115032 a(n) = (9*F(6*(n+1)) - F(6*n) + 8)/16, n >= 0 with F(n) = A000045(n) (Fibonacci). From the partial fraction decomposition of the o.g.f.: (1/2)*((9 - x)/(1 - 18*x + x^2) + 1/(1 - x)). For F(6*n)/8 see A049660(n). a(-1) = 1 with F(-6) = -F(6) = -8.
%F A115032 a(n) = (9*S(n, 18) - S(n-1, 18) + 1)/2, with the Chebyshev S-polynomials (see A049310). From A049660.
%F A115032 a(n) = (A023039(n+1) + 1)/2.
%F A115032 (End)
%F A115032 a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). - _Colin Barker_, Aug 23 2014
%F A115032 From _Wolfdieter Lang_, Aug 24 2014: (Start)
%F A115032 a(n) = 18*a(n-1) - a(n-2) - 8, n >= 1, a(-1) = 1, a(0) = 5. See the Chebyshev S-polynomial formula above.
%F A115032 The o.g.f. for the sequence a(n-1) with a(-1) = 1, n >= 0, [1, 5,  81, 1445, ..] is (1-14*x+5*x^2)/((1-x)*(1-18*x+x^2)).
%F A115032 (See the _Colin Barker_ formula from Aug 04 2014 in the history of A240926.) (End)
%e A115032 G.f. = 5 + 81*x + 1445*x^2 + 25921*x^3 + 465125*x^4 + 8346321*x^5 + ...
%p A115032 seq((9*combinat:-fibonacci(6*(n+1)) - combinat:-fibonacci(6*n) + 8)/16, n = 0 .. 20); # _Robert Israel_, Aug 25 2014
%t A115032 LinearRecurrence[{19,-19,1},{5,81,1445},30] (* _Harvey P. Dale_, Nov 14 2014 *)
%t A115032 CoefficientList[Series[(5 - 14*x + x^2)/((1 - x)*(x^2 - 18*x + 1)), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 19 2017 *)
%o A115032 (PARI) Vec((5-14*x+x^2)/((1-x)*(x^2-18*x+1)) + O(x^20)) \\ _Michel Marcus_, Aug 23 2014
%Y A115032 Cf. A001076, A001077, A007805, A023039, A097924.
%Y A115032 Cf. also A000045, A049660, A049310, A023039. - _Wolfdieter Lang_, Aug 22 2014
%K A115032 easy,nonn
%O A115032 0,1
%A A115032 _Creighton Dement_, Feb 26 2006
%E A115032 More terms from _Michel Marcus_, Aug 23 2014
%E A115032 Edited (comment by _Kival Ngaokrajang_ rewritten, Chebyshev index link added) by _Wolfdieter Lang_, Aug 26 2014
%E A115032 Partially edited by _Jon E. Schoenfield_ and _N. J. A. Sloane_, Mar 15 2024