cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115085 Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n-1 from T(n-1,k) to T(n-1,n-1) with the vector of terms in column k+1 from T(k+1,k+1) to T(n,k+1): T(n,k) = Sum_{j=0..n-k-1} T(n-1,j+k)*T(j+k+1,k+1) for n>k+1>0, with T(n,n) = 1 and T(n,n-1) = n (n>=1).

This page as a plain text file.
%I A115085 #9 Dec 21 2015 01:16:41
%S A115085 1,1,1,3,2,1,12,5,3,1,58,21,7,4,1,321,102,32,9,5,1,1963,579,158,45,11,
%T A115085 6,1,13053,3601,933,226,60,13,7,1,92946,24426,5939,1395,306,77,15,8,1,
%U A115085 702864,176858,41385,9097,1977,398,96,17,9,1,5599204,1359906,306070
%N A115085 Triangle, read by rows, where T(n,k) equals the dot product of the vector of terms in row n-1 from T(n-1,k) to T(n-1,n-1) with the vector of terms in column k+1 from T(k+1,k+1) to T(n,k+1): T(n,k) = Sum_{j=0..n-k-1} T(n-1,j+k)*T(j+k+1,k+1) for n>k+1>0, with T(n,n) = 1 and T(n,n-1) = n (n>=1).
%C A115085 Triangle A115080 is the dual of this triangle.
%H A115085 Paul D. Hanna, <a href="/A115085/b115085.txt">Table of n, a(n) for n = 0..405, as a flattened triangle of rows 0..27.</a>
%e A115085 T(n,k)=[T(n-1,k),T(n-1,k+1),..,T(n-1,n-1)]*[T(k+1,k+1),T(k+2,k+1),..,T(n,k+1)]:
%e A115085 12 = [3,2,1]*[1,2,5] = 3*1 + 2*2 + 1*5;
%e A115085 21 = [5,3,1]*[1,3,7] = 5*1 + 3*3 + 1*7;
%e A115085 102 = [21,7,4,1]*[1,3,7,32] = 21*1 + 7*3 + 4*7 + 1*32;
%e A115085 158 = [32,9,5,1]*[1,4,9,45] = 32*1 + 9*4 + 5*9 + 1*45.
%e A115085 Triangle begins:
%e A115085 1;
%e A115085 1, 1;
%e A115085 3, 2, 1;
%e A115085 12, 5, 3, 1;
%e A115085 58, 21, 7, 4, 1;
%e A115085 321, 102, 32, 9, 5, 1;
%e A115085 1963, 579, 158, 45, 11, 6, 1;
%e A115085 13053, 3601, 933, 226, 60, 13, 7, 1;
%e A115085 92946, 24426, 5939, 1395, 306, 77, 15, 8, 1;
%e A115085 702864, 176858, 41385, 9097, 1977, 398, 96, 17, 9, 1;
%e A115085 5599204, 1359906, 306070, 65310, 13195, 2691, 502, 117, 19, 10, 1;
%e A115085 46746501, 10996740, 2403792, 494022, 97701, 18353, 3549, 618, 140, 21, 11, 1;
%e A115085 407019340, 93136545, 19799468, 3970878, 755834, 140178, 24691, 4563, 746, 165, 23, 12, 1; ...
%o A115085 (PARI) {T(n,k)=if(n==k,1,if(n==k+1,n, sum(j=0,n-k-1,T(n-1,j+k)*T(j+k+1,k+1))))}
%o A115085 for(n=0,12,for(k=0,n, print1(T(n,k),", "));print(""))
%Y A115085 Cf. A115086 (column 0), A115087 (column 1), A115088 (column 2), A115089 (row sums); A115080 (dual triangle).
%K A115085 nonn,tabl
%O A115085 0,4
%A A115085 _Paul D. Hanna_, Jan 13 2006