cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115074 a(n) is the largest prime dividing the n-th nonsquarefree positive integer.

Original entry on oeis.org

2, 2, 3, 3, 2, 3, 5, 3, 5, 3, 7, 2, 3, 5, 11, 5, 3, 7, 5, 13, 3, 7, 5, 7, 2, 17, 3, 5, 19, 5, 3, 7, 11, 5, 23, 3, 7, 11, 5, 13, 3, 7, 29, 13, 5, 11, 31, 5, 7, 2, 11, 5, 17, 7, 3, 7, 37, 5, 19, 17, 13, 5, 3, 41, 7, 13, 19, 43, 7, 11, 5, 23, 47, 7, 3, 7, 11, 5, 17, 23, 13, 53, 3, 11, 7, 5, 19, 29, 13
Offset: 1

Views

Author

Leroy Quet, Mar 01 2006

Keywords

Examples

			12, the 4th nonsquarefree positive integer, is 2^2 * 3. 3 is the largest prime dividing 12. So a(4) = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if mobius(n)=0 then op(nops(factorset(n)),factorset(n)) fi end: seq(a(n),n=1..270); # Emeric Deutsch, Mar 06 2006
  • Mathematica
    FactorInteger[ # ][[ -1, 1]] & /@ Select[ Range@235, !SquareFreeQ@# &] (* Robert G. Wilson v, Mar 09 2006 *)

Formula

a(n) = A006530(A013929(n)).

Extensions

More terms from Emeric Deutsch and Robert G. Wilson v, Mar 06 2006

A117183 a(n) = smallest prime dividing n-th nonsquarefree positive integer.

Original entry on oeis.org

2, 2, 3, 2, 2, 2, 2, 2, 5, 3, 2, 2, 2, 2, 2, 3, 2, 7, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 11, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 13, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Leroy Quet, Mar 01 2006

Keywords

Examples

			12, the 4th nonsquarefree positive integer, is 2^2 * 3. 2 is the smallest prime dividing 12. So a(4) = 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if mobius(n)=0 then op(1,factorset(n)) fi end: seq(a(n),n=1..345); # Emeric Deutsch
  • Mathematica
    FactorInteger[ # ][[1, 1]] & /@ Select[ Range@252, !SquareFreeQ@# &] (* Robert G. Wilson v, Mar 06 2006 *)
    FactorInteger[#][[1,1]]&/@DeleteCases[Range[300],?SquareFreeQ] (* _Harvey P. Dale, Jun 02 2017 *)
  • PARI
    list(lim) = apply(x -> factor(x)[1,1], select(x -> !issquarefree(x), vector(lim, i, i))); \\ Amiram Eldar, Jun 25 2025

Formula

a(n) = A020639(A013929(n)).

Extensions

More terms from Emeric Deutsch and Robert G. Wilson v, Mar 06 2006
Showing 1-2 of 2 results.