cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115140 O.g.f. inverse of Catalan A000108 o.g.f.

Original entry on oeis.org

1, -1, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452, -18367353072152
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Crossrefs

See A034807 and A115149 for comments.
For convolutions of this sequence see A115141-A115149.

Formula

O.g.f.: 1/c(x) = 1-x*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers).
a(0) = 1, a(n) = -C(n-1), n>=1, with C(n):=A000108(n) (Catalan).
G.f.: (1 + sqrt(1-4*x))/2=U(0) where U(k)=1 - x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 29 2012
G.f.: 1/G(0) where G(k) = 1 - x/(x - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2012
G.f.: G(0), where G(k)= 2*x*(2*k+1) + k + 1 - 2*x*(k+1)*(2*k+3)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
D-finite with recurrence n*a(n) +2*(-2*n+3)*a(n-1)=0. a(n) = A002420(n)/2, n>0. - R. J. Mathar, Aug 09 2015
a(n) ~ -2^(2*n-2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, May 06 2021