This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115146 #32 Sep 15 2024 14:55:29 %S A115146 1,-7,14,-7,0,0,0,-1,-7,-35,-154,-637,-2548,-9996,-38760,-149226, %T A115146 -572033,-2187185,-8351070,-31865925,-121580760,-463991880, %U A115146 -1771605360,-6768687870,-25880277150,-99035193894,-379300783092,-1453986335186,-5578559816632,-21422369201800 %N A115146 Seventh convolution of A115140. %H A115146 Seiichi Manyama, <a href="/A115146/b115146.txt">Table of n, a(n) for n = 0..1670</a> %F A115146 O.g.f.: 1/c(x)^7 = P(8, x) - x*P(7, x)*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(8, x)=1-6*x+10*x^2-4*x^3 and P(7, x)=1-5*x+6*x^2-x^3. %F A115146 a(n) = -C7(n-7), n>=7, with C7(n):=A000588(n+3) (seventh convolution of Catalan numbers). a(0)=1, a(1)=-7, a(2)=14, a(3)=-7, a(4)=a(5)=a(6)=0. [1, -7, 14, -7] is row n=7 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments. %F A115146 D-finite with recurrence n*(n-7)*a(n) -2*(n-4)*(2*n-9)*a(n-1)=0. - _R. J. Mathar_, Sep 15 2024 %t A115146 CoefficientList[Series[(1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3) *Sqrt[1-4*x])/2, {x, 0, 30}], x] (* _G. C. Greubel_, Feb 12 2019 *) %o A115146 (PARI) my(x='x+O('x^30)); Vec((1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3) *sqrt(1-4*x))/2) \\ _G. C. Greubel_, Feb 12 2019 %o A115146 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3)*Sqrt(1-4*x))/2 )); // _G. C. Greubel_, Feb 12 2019 %o A115146 (Sage) ((1-7*x+14*x^2-7*x^3 +(1-5*x+6*x^2-x^3)*sqrt(1-4*x))/2 ).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 12 2019 %Y A115146 Cf. A115139, A115140, A115141, A115142, A115143. %Y A115146 Cf. A115144, A115145, A115147, A115148, A115149. %K A115146 sign,easy %O A115146 0,2 %A A115146 _Wolfdieter Lang_, Jan 13 2006