This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115167 #19 Jan 11 2024 13:26:17 %S A115167 5,19,29,43,51,55,67,69,77,89,115,151,171,173,187,189,197,233,237,243, %T A115167 245,249,267,271,283,285,291,295,307,317,329,341,343,349,355,403,405, %U A115167 411,427,429,435,437,461,489,491,507,569,571,593,597,603,605,653,665 %N A115167 Odd numbers k such that k-1 and k+1 have the same number of prime divisors with multiplicity. %H A115167 Amiram Eldar, <a href="/A115167/b115167.txt">Table of n, a(n) for n = 1..10000</a> %t A115167 s = {}; o1 = 0; Do[o2 = PrimeOmega[n]; If[o1 == o2, AppendTo[s, n-1]]; o1 = o2, {n, 2, 666, 2}]; s (* _Amiram Eldar_, Sep 23 2019 *) %t A115167 Select[Mean/@SequencePosition[PrimeOmega[Range[700]],{x_,_,x_}],OddQ] (* _Harvey P. Dale_, Jan 11 2024 *) %o A115167 (PARI) g(n) = forstep(x=3, n, 2, p1=bigomega(x-1); p2=bigomega(x+1); if(p1==p2, print1(x","))) %o A115167 (Python) %o A115167 from sympy import primeomega %o A115167 def aupto(limit): %o A115167 prv, nxt, alst = 1, 2, [] %o A115167 for n in range(3, limit+1, 2): %o A115167 if prv == nxt: alst.append(n) %o A115167 prv, nxt = nxt, primeomega(n+3) %o A115167 return alst %o A115167 print(aupto(665)) # _Michael S. Branicky_, May 19 2021 %Y A115167 Subsequence of A280382. %K A115167 easy,nonn %O A115167 1,1 %A A115167 _Cino Hilliard_, Mar 03 2006