cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115169 Integers b > 0 for which there exists a positive integer a <= b such that (a^2 + b^2)/(1 + ab) is an integer.

This page as a plain text file.
%I A115169 #28 Nov 09 2021 13:38:25
%S A115169 1,8,27,30,64,112,125,216,240,343,418,512,729,1000,1020,1331,1560,
%T A115169 1728,2133,2197,2744,3120,3375,4096,4913,5822,5832,6859,7770,8000,
%U A115169 9261,10648,12167,13824,15625,16256,16800,17576,18957,19683
%N A115169 Integers b > 0 for which there exists a positive integer a <= b such that (a^2 + b^2)/(1 + ab) is an integer.
%C A115169 All positive cubes are in this sequence.
%C A115169 Indeed, if b = k^3, then for a = k, we have a^2 + b^2 = k^2 + k^6 = (1 + k^4)*k^2 = (a*b + 1)*a^2. More generally, if the ratio (a^2 + b^2)/(a*b + 1) is an integer, it is equal to gcd(a,b)^2, thus in particular a perfect square. (This was Question 6 in the 1988 IMO.) All solutions (a,b) are member of a sequence {(x(n), x(n+1)); n = 1,2,...} where x = (0, k, k^3, k^5 - k, ...) with x(n+1) = k^2*x(n) - x(n-1) and some k >= 2, cf. A052530 for k = 2, A065100 for k = 3. (One might consider >= 0 instead > 0 in the definition, but a = 0 yields a solution for any b.) - _M. F. Hasler_, Jun 12 2019
%H A115169 Charles R Greathouse IV, <a href="/A115169/b115169.txt">Table of n, a(n) for n = 1..500</a>
%H A115169 Steve Chow, <a href="https://youtu.be/usEQRx4J_ew">You, Me and The Legend of Question Six</a>, BlackPenRedPen, YouTube, Apr 20 2020.
%H A115169 I. Lauko, G. Pinter and L. Pinter, <a href="http://www.jstor.org/stable/27642901">Another Step Further... On a Problem of the 1988 IMO</a>, Math. Mag. 79 (2006), 45-53.
%H A115169 Simon Pampena, <a href="https://www.youtube.com/watch?v=Y30VF3cSIYQ">The Legend of Question Six</a>, Numberphile, YouTube, Aug 16 2016.
%e A115169 (2^2+8^2)/(1+2*8) = 68/17 = 4, an integer, so 8 is a term of the series.
%e A115169 From _M. F. Hasler_, Jun 12 2019: (Start)
%e A115169 The list of solutions starts:
%e A115169      a      b     a^2+b^2   a*b+1   ratio
%e A115169    ----------------------------------------
%e A115169      1      1          2       2       1
%e A115169      8      2         68      17       4
%e A115169     27      3        738      82       9
%e A115169     30      8        964     241       4
%e A115169     64      4       4112     257      16
%e A115169    112     30      13444    3361       4
%e A115169    125      5      15650     626      25
%e A115169    216      6      46692    1297      36
%e A115169    240     27      58329    6481       9
%e A115169    343      7     117698    2402      49
%e A115169    418    112     187268   46817       4
%e A115169    512      8     262208    4097      64
%e A115169    729      9     531522    6562      81
%e A115169   1000     10    1000100   10001     100
%e A115169   1020     64    1044496   65281      16
%e A115169 (End)
%o A115169 (PARI) isok(n) = for(m=0, n, if (denominator((m^2+n^2)/(1+m*n))==1, return(1))); return (0); \\ _Michel Marcus_, Sep 18 2017
%o A115169 (PARI) is_A115169(n)=for(a=1,n\3+1,(a^2+n^2)%(1+a*n)||return(1)) \\ _M. F. Hasler_, Jun 12 2019
%o A115169 (PARI) is(n)=my(s=sqrtnint(n,3),n2=n^2); for(b=1,s, if((n2+b^2)%(n*b+1)==0, return(1))); for(K=2,sqrtint((n2+(s+1)^2)\(n*s+n+1)), my(k=K^2); if(issquare(k^2*n2-4*n2+4*k), return(1))); 0 \\ _Charles R Greathouse IV_, Nov 08 2021
%Y A115169 Cf. A000578 (cubes), A052530 (subsequence of terms for ratio 2^2, for n >= 2), A065100 (subsequence of terms for ratio 3^2).
%K A115169 nonn
%O A115169 1,2
%A A115169 _John W. Layman_, Mar 03 2006
%E A115169 Edited by _M. F. Hasler_, Jun 12 2019