This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A115186 #24 Oct 02 2024 12:31:54 %S A115186 2,9,27,135,944,5264,29888,50624,203391,3290624,6082047,32535999, %T A115186 326481920,3274208000,6929459199,72523096064,37694578688,471672487935, %U A115186 11557226700800,54386217385983,50624737509375,275892612890624,4870020829413375,68091093855502335,2280241934368767,809386931759611904,519017301463269375 %N A115186 Smallest number m such that m and m+1 have exactly n prime factors (counted with multiplicity). %C A115186 A001222(a(n)) = A001222(a(n)+1) = n: subsequence of A045920. %C A115186 a(16) > 4*10^10. - _Martin Fuller_, Jan 17 2006 %C A115186 a(n) <= A093548(n) <= A052215(n). - _Zak Seidov_, Jan 16 2015 %C A115186 Apparently, 4*a(n)+2 is the least number k such that k-2 and k+2 have exactly n+2 prime factors, counted with multiplicity. - _Hugo Pfoertner_, Apr 02 2024 %D A115186 J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 135, p. 46, Ellipses, Paris 2008. %e A115186 a(10) = 3290624 = 6427 * 2^9, 3290624+1 = 13 * 5^5 * 3^4: %e A115186 A001222(3290624) = A001222(3290625) = 10. %p A115186 f:= proc(n) uses priqueue; local t,x,p,i; %p A115186 initialize(pq); %p A115186 insert([-3^n, 3$n], pq); %p A115186 do %p A115186 t:= extract(pq); %p A115186 x:= -t[1]; %p A115186 if numtheory:-bigomega(x-1)=n then return x-1 %p A115186 elif numtheory:-bigomega(x+1)=n then return x %p A115186 fi; %p A115186 p:= nextprime(t[-1]); %p A115186 for i from n+1 to 2 by -1 while t[i] = t[-1] do %p A115186 insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq) %p A115186 od; %p A115186 od %p A115186 end proc: %p A115186 seq(f(i),i=1..27); # _Robert Israel_, Sep 30 2024 %Y A115186 Cf. A001222, A045920, A052215, A093548. %Y A115186 Equivalent sequences for longer runs: A113752 (3), A356893 (4). %K A115186 nonn %O A115186 1,1 %A A115186 _Reinhard Zumkeller_, Jan 16 2006 %E A115186 a(13)-a(15) from _Martin Fuller_, Jan 17 2006 %E A115186 a(16)-a(17) from _Donovan Johnson_, Apr 08 2008 %E A115186 a(18)-a(22) from _Donovan Johnson_, Jan 21 2009 %E A115186 a(23)-a(25) from _Donovan Johnson_, May 25 2013 %E A115186 a(26)-a(27) from _Robert Israel_, Sep 30 2024