A115193 Generalized Catalan triangle of Riordan type, called C(1,2).
1, 1, 1, 3, 3, 1, 13, 13, 5, 1, 67, 67, 27, 7, 1, 381, 381, 157, 45, 9, 1, 2307, 2307, 963, 291, 67, 11, 1, 14589, 14589, 6141, 1917, 477, 93, 13, 1, 95235, 95235, 40323, 12867, 3363, 723, 123, 15, 1, 636925
Offset: 0
Examples
Triangle begins: 1; 1, 1; 3, 3, 1; 13, 13, 5, 1; 67, 67, 27, 7, 1; ... Production matrix begins: 1, 1; 2, 2, 1; 4, 4, 2, 1; 8, 8, 4, 2, 1; 16, 16, 8, 4, 2, 1; 32, 32, 16, 8, 4, 2, 1; 64, 64, 32, 16, 8, 4, 2, 1; 128, 128, 64, 32, 16, 8, 4, 2, 1; ... _Philippe Deléham_, Sep 22 2014
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..5150 (up to row 100)
- Wolfdieter Lang, First 10 rows.
Crossrefs
Programs
-
Maple
lim:=7: c:=(1-sqrt(1-8*x))/(4*x): g:=(1+2*x*c)/(1+x): gf1:=g*(x*c)^m: for m from 0 to lim do t:=taylor(gf1,x,lim+1): for n from 0 to lim do a[n,m]:=coeff(t,x,n):od:od: seq(seq(a[n,m],m=0..n),n=0..lim); # Nathaniel Johnston, Apr 30 2011
-
Mathematica
A110510[n_, k_] := (k/n)*Binomial[2*n - k - 1, n - k]*2^(n - k); T[n_, k_] := If[n == 0, 1, Sum[A110510[n, i], {i, k, n}]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 17 2025 *)
Formula
G.f. for column m>=0 is g(x)*(x*c(2*x))^m, with g(x):=(1+2*x*c(2*x))/(1+x) and c(x) is the o.g.f. of A000108 (Catalan numbers).
T(n,k) = Sum_{i=k..n} A110510(n,i) for 0 <= k <= n. - Werner Schulte, Mar 24 2019
Comments