A115196 Triangle read by rows formed from nonzero entries in table of number of graphs on n nodes with clique number k.
1, 1, 2, 1, 3, 6, 1, 4, 15, 13, 1, 5, 30, 82, 37, 1, 6, 51, 301, 578, 106, 1, 7, 80, 842, 4985, 6021, 409, 1, 8, 117, 1995, 27107, 142276, 101267, 1896, 1, 9, 164, 4210, 112225, 1724440, 7269487, 2882460, 12171
Offset: 2
Examples
Table: number of graphs on n nodes with clique number k n = .1...2...3...4....5....6.....7......8........9.......10. k ---------------------------------------------------------- 2....0...1...2...6...13...37...106....409.....1896....12171 = A052450 3....0...0...1...3...15...82...578...6021...101267..2882460 = A052451 4....0...0...0...1...4....30...301...4985...142276..7269487 = A052452 5....0...0...0...0...1....5.....51....842....27107..1724440 = A077392 6....0...0...0...0...0....1......6.....80.....1995...112225 = A077393 7....0...0...0...0...0....0......1......7......117.....4210 = A077394 8....0...0...0...0...0....0......0......1........8......164 = A205577 9....0...0...0...0...0....0......0......0........1........9 = A205578 10...0...0...0...0...0....0......0......0........0........1.
Links
- Keith M. Briggs, Combinatorial Graph Theory
- Eric Weisstein's World of Mathematics, Clique Number
Formula
1+Sum_{k>=2} T(n,k) = A000088(n). - R. J. Mathar, May 06 2018