A115199 Parity of partitions of n, with 0 for even, 1 for odd. The definition follows.
0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
Offset: 0
Examples
[0];[1,0];[0,1,0];[1,0,0,1,0];[0,1,1,0,0,1,0];... a(5,4)=0 because the 4th partition of n=5, (1^1,2^2)=(1,2,2), in the A-St order, has an even number of even parts (the number of even parts is in fact 2).
Formula
a(n,m)= 0 if sum(e(n,m,2*j),j=1..floor(n/2)) is even, else 1, with the exponents e(n,m,k) of the m-th partition of n in the A-St order; i.e. the sum of the exponents of the even parts of the partition (1^e(n,m,1),2^e(n,m,2),..., n^e(n,m,n)) is even iff a(n,m)=0.
Comments