A115216 "Correlation triangle" for 2^n.
1, 2, 2, 4, 5, 4, 8, 10, 10, 8, 16, 20, 21, 20, 16, 32, 40, 42, 42, 40, 32, 64, 80, 84, 85, 84, 80, 64, 128, 160, 168, 170, 170, 168, 160, 128, 256, 320, 336, 340, 341, 340, 336, 320, 256, 512, 640, 672, 680, 682, 682, 680, 672, 640, 512, 1024, 1280, 1344, 1360, 1364
Offset: 0
Examples
Triangle begins 1, 2, 2, 4, 5, 4, 8, 10, 10, 8, 16, 20, 21, 20, 16, 32, 40, 42, 42, 40, 32, ... Northwest corner of square matrix: 1....2....4....8....16 2....5....10...20...40 4....10...21...42...85 8....20...41...85...170 16...40...84...170..341 ..
Programs
-
Mathematica
(* A115216 as a square matrix *) s[k_] := 2^(k - 1); U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 12}]]; L = Transpose[U]; M = L.U; TableForm[M] m[i_, j_] := M[[i]][[j]]; Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] Table[f[n], {n, 1, 12}] Table[Sqrt[f[n]], {n, 1, 12}] (* -1+2^n *) Table[m[n, n], {n, 1, 12}] (* A002450 *) (* Clark Kimberling, Dec 26 2011 *)
Formula
T(n, k) = Sum_{j=0..n} [j<=k]*2^(k-j)[j<=n-k]*2^(n-k-j).
G.f.: 1/((1-2*x)*(1-2*x*y)*(1-x^2*y)). - Christian G. Bower, Jan 17 2006
Comments