cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115258 Isolated primes in Ulam's lattice (1, 2, ... in spiral).

This page as a plain text file.
%I A115258 #28 Aug 16 2025 06:19:28
%S A115258 83,101,127,137,163,199,233,311,373,443,463,491,541,587,613,631,641,
%T A115258 659,673,683,691,733,757,797,859,881,911,919,953,971,991,1013,1051,
%U A115258 1061,1103,1109,1117,1193,1201,1213,1249,1307,1319,1409,1433,1459,1483,1487
%N A115258 Isolated primes in Ulam's lattice (1, 2, ... in spiral).
%C A115258 Isolated prime numbers have no adjacent primes in a lattice generated by writing consecutive integers starting from 1 in a spiral distribution. If n0 is the number of isolated primes and p the number of primes less than N, the ratio n0/p approaches 1 as N increases. If n1, n2, n3, n4 denote the number of primes with respectively 1, 2, 3, 4 adjacent primes in the lattice, the ratios n1/n0, n2/n1, n3/n2, n4/n3 approach 0 as N increases. The limits stand for any 2D lattice of integers generated by a priori criteria (i.e., not knowing distributions of primes) as Ulam's lattice.
%D A115258 G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 22.
%H A115258 Michael De Vlieger, <a href="/A115258/b115258.txt">Table of n, a(n) for n = 1..10000</a>
%H A115258 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSpiral.html">Prime Spiral</a>.
%e A115258 83 is an isolated prime as the adjacent numbers in lattice 50, 51, 81, 82, 84, 123, 124, 125 are not primes.
%e A115258 From _Michael De Vlieger_, Dec 22 2015: (Start)
%e A115258 Spiral including n <= 17^2 showing only primes, with the isolated primes in parentheses (redrawn by _Jon E. Schoenfield_, Aug 06 2017):
%e A115258   257 .  .  .  .  . 251 .  .  .  .  .  .  .  .  . 241
%e A115258    . 197 .  .  . 193 . 191 .  .  .  .  .  .  .  .  .
%e A115258    .  .  .  .  .  .  .  . 139 .(137).  .  .  .  . 239
%e A115258    .(199).(101).  .  . 97  .  .  .  .  .  .  . 181 .
%e A115258    .  .  .  .  .  .  .  . 61  . 59  .  .  . 131 .  .
%e A115258    .  .  . 103 . 37  .  .  .  .  . 31  . 89  . 179 .
%e A115258   263 . 149 . 67  . 17  .  .  . 13  .  .  .  .  .  .
%e A115258    .  .  .  .  .  .  .  5  .  3  . 29  .  .  .  .  .
%e A115258    .  . 151 .  .  . 19  .  .  2 11  . 53  .(127).(233)
%e A115258    .  .  . 107 . 41  .  7  .  .  .  .  .  .  .  .  .
%e A115258    .  .  .  . 71  .  .  . 23  .  .  .  .  .  .  .  .
%e A115258    .  .  . 109 . 43  .  .  . 47  .  .  .(83) . 173 .
%e A115258   269 .  .  . 73  .  .  .  .  . 79  .  .  .  .  . 229
%e A115258    .  .  .  .  . 113 .  .  .  .  .  .  .  .  .  .  .
%e A115258   271 . 157 .  .  .  .  .(163).  .  . 167 .  .  . 227
%e A115258    . 211 .  .  .  .  .  .  .  .  .  .  . 223 .  .  .
%e A115258    .  .  .  . 277 .  .  . 281 . 283 .  .  .  .  .  .
%e A115258 (End)
%p A115258 # A is Ulam's lattice
%p A115258 if (isprime(A[x,y])and(not(isprime(A[x+1,y]) or isprime(A[x-1,y])or isprime(A[x,y+1])or isprime(A[x,y-1])or isprime(A[x-1,y-1])or isprime(A[x+1,y+1])or isprime(A[x+1,y-1])or isprime(A[x-1,y+1])))) then print (A[x,y]) ; fi;
%t A115258 spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; f[spiral@ 21 /. n_ /; CompositeQ@ n -> 0] (* _Michael De Vlieger_, Dec 22 2015, Version 10 *)
%Y A115258 Cf. A001107, A002939, A007742, A033951-A033954, A033989, A033990, A033991, A002943, A033996, A033988, A014848.
%Y A115258 Cf. A113688 (isolated semiprimes in the semiprime spiral), A156859.
%K A115258 nonn
%O A115258 1,1
%A A115258 _Giorgio Balzarotti_ and _Paolo P. Lava_, Feb 17 2006