A115281 Correlation triangle for the sequence 2-0^n.
1, 2, 2, 2, 5, 2, 2, 6, 6, 2, 2, 6, 9, 6, 2, 2, 6, 10, 10, 6, 2, 2, 6, 10, 13, 10, 6, 2, 2, 6, 10, 14, 14, 10, 6, 2, 2, 6, 10, 14, 17, 14, 10, 6, 2, 2, 6, 10, 14, 18, 18, 14, 10, 6, 2, 2, 6, 10, 14, 18, 21, 18, 14, 10, 6, 2
Offset: 0
Examples
Triangle begins 1; 2,2; 2,5,2; 2,6,6,2; 2,6,9,6,2; 2,6,10,10,6,2;
Programs
-
Mathematica
Flatten[Table[Table[If[n - k + 1 == k, 4*(n - k + 1 - 1) + 1, If[n - k + 1 > k, 4*(k - 1) + 2, 4*(n - k + 1 - 1) + 2]], {k, 1, n}], {n, 1, 11}]] (* Mats Granvik, Jan 06 2016 *)
Formula
G.f.: (1+x)(1+x*y)/((1-x)(1-x*y)(1-x^2*y)).
T(n, k) = sum{j=0..n, [j<=k]*(2-0^(k-j))*[j<=n-k]*(2-0^(n-k-j))}.
Extensions
a(65)-a(66) from Mats Granvik, Jan 06 2016
Comments